Prediction and study of structural and electro-optical properties of two-dimensional sulfur germanium diphosphide nanostructure by Density Function Theory (DFT)

Document Type : Full length research Paper

Authors

1 Department of Physics, Center of Basic Science, Khatam ol-Anbia (PBU) University, Tehran, Iran

2 Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

Abstract

In this paper, a new two-dimensional nanostructure called germanium sulfur diphosphide (GeP2S) structure, in the framework of the Density Functional Theory (DFT) has been predicted. In addition to studying the static and dynamic stability; structural properties of this two-dimensional nanostructure have also been compared with similar previous structures. The research findings indicate the acceptable stability of the proposed monolayer. The electronic aspects of this monolayer in the optimal state have been investigated and presented by two methods of hybrid function approximation (HSE06) and generalized gradient approximation method (GGA-PBE). The study of electron properties of this proposed monolayer introduces it as an indirect semiconductor with an energy gap of 1.367 eV by the HSE06 approximation and 0.688 eV by PBE-GGA approximation method. Study of optical properties of this proposed nanostructure indicate the agreement of optical band gap with the electronic band gap of this two-dimensional monolayer, especially in the HSE06 approximation method. Based on the findings of this study, due to the relatively high absorption rate and very low reflectivity in the visible spectrum in the energy range of 1 to 5 eV, if this proposed nanostructure is synthesized can be considered suitable for optical applications, especially in solar energy devices.

Keywords

Main Subjects


[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306 (2004) 666. http://science.sciencemag.org/content/306/5696/666.abstract
[2] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438 (2005) 197. https://doi.org/10.1038/nature04233
[3] S. Okada, Energetics of nanoscale graphene ribbons: Edge geometries and electronic structures, Physical Review B 77 (2008) 041408. https://link.aps.org/doi/10.1103/PhysRevB.77.041408
[4] H.B. Gautam Mukhopadhyay, Graphene and some of its structural analogues: full-potential density functional theory calculations, World Journal of Engineering 10 (2013) 39-48. https://arxiv.org/abs/1303.3885
[5] J. Zhu, D. Yang, Z. Yin, Q. Yan, H. Zhang, Graphene and Graphene-Based Materials for Energy Storage Applications. Small, 10 (2014) 3480-3498. https://doi.org/10.1002/smll.201303202
[6] C. Su, H. Jiang, J. Feng, Two-dimensional carbon allotrope with strong electronic anisotropy, Physical Review B 87 (2013) 075453. https://link.aps.org/doi/10.1103/PhysRevB.87.075453
[7] C.N.R. Rao, H.S.S. Ramakrishna Matte, U. Maitra, Graphene Analogues of Inorganic Layered Materials, Angewandte Chemie International Edition 52 (2013) 13162-13185. https://doi.org/10.1002/anie.201301548
[8] D. Malko, C. Neiss, F. Viñes, A. Görling, Competition for Graphene: Graphynes with Direction-Dependent Dirac Cones, Physical Review Letters 108 (2012) 086804. https://link.aps.org/doi/10.1103/PhysRevLett.108.086804
[9] C.-C. Liu, W. Feng, Y. Yao, Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium, Physical Review Letters 107 (2011) 076802. https://link.aps.org/doi/10.1103/PhysRevLett.107.076802
[10] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon, Physical Review Letters 108 (2012) 155501. https://link.aps.org/doi/10.1103/PhysRevLett.108.155501
[11] G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations, Physical Review B 76 (2007) 073103. https://link.aps.org/doi/10.1103/PhysRevB.76.073103
[12] K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat Mater 3 (2004) 404-9. https://www.nature.com/articles/nmat1134
[13] S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and Indirect–Direct Band-Gap Transitions, Angewandte Chemie 127 (2015) 3155-3158. https://doi.org/10.1002/ange.201411246
[14] S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene, Small 11 (2015) 640-652. https://doi.org/10.1002/smll.201402041
[15] S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, H. Zeng, Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities, Angewandte Chemie International Edition 55 (2016) 1666-1669. https://doi.org/10.1002/anie.201507568
[16] S. Zhang, W. Zhou, Y. Ma, J. Ji, B. Cai, S. A. Yang, Z. Zhu, Z. Chen, H. Zeng, Antimonene Oxides: Emerging Tunable Direct Bandgap Semiconductor and Novel Topological Insulator, Nano Letters 17 (2017) 3434-3440. https://doi.org/10.1021/acs.nanolett.7b00297
[17] S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J. Gómez-Herrero, P. Ares, F. Zamora, Z. Zhu, H. Zeng, Recent progress in 2D group-VA semiconductors: from theory to experiment, Chemical Society Reviews 47 (2018) 982-1021. http://dx.doi.org/10.1039/C7CS00125H
[18] S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, P. Jena, Penta-graphene: A new carbon allotrope, Proceedings of the National Academy of Sciences 112 (2015) 2372. http://www.pnas.org/content/112/8/2372.abstract
[19] W. Zhou, S. Guo, S. Zhang, Z. Zhu, X. Song, T. Niu, K. Zhang, X. Liu, Y. Zou, H. Zeng, DFT coupled with NEGF study of a promising two-dimensional channel material: black phosphorene-type GaTeCl, Nanoscale 10 (2018) 3350-3355. http://dx.doi.org/10.1039/C7NR08252E
[20] S. Zhang, J. Zhou, Q. Wang, P. Jena, Beyond Graphitic Carbon Nitride: Nitrogen-Rich Penta-CN2 Sheet, The Journal of Physical Chemistry C 120 (2016) 3993-3998. https://doi.org/10.1021/acs.jpcc.5b12510
[21] A. Lopez-Bezanilla, P.B. Littlewood, σ–π-Band Inversion in a Novel Two-Dimensional Material, The Journal of Physical Chemistry C 119 (2015) 19469-19474. https://doi.org/10.1021/acs.jpcc.5b04726
[22] F. Li, K. Tu, H. Zhang, Z. Chen, Flexible structural and electronic properties of a pentagonal B2C monolayer via external strain: a computational investigation, Physical Chemistry Chemical Physics 17 (2015) 24151-24156. http://dx.doi.org/10.1039/C5CP03885E
[23] M. Naseri, Arsenic carbide monolayer: First principles prediction, Applied Surface Science 423 (2017) 566-570. http://www.sciencedirect.com/science/article/pii/S016943321731797X
[24] H. Morshedi, M. Naseri, M.R. Hantehzadeh, S.M. Elahi, Theoretical Prediction of an Antimony-Silicon Monolayer $$(hbox {penta-Sb}_{2}hbox {Si})$$(penta-Sb2Si): Band Gap Engineering by Strain Effect, Journal of Electronic Materials 47 (2018) 2290-2297. https://doi.org/10.1007/s11664-017-6045-0
[25] M. Naseri, First-principles prediction of a novel cadmium disulfide monolayer (penta-CdS2): Indirect to direct band gap transition by strain engineering, Chemical Physics Letters 685 (2017) 310-315. http://www.sciencedirect.com/science/article/pii/S0009261417307546
[26] M. Naseri, Penta-SiC5 monolayer: A novel quasi-planar indirect semiconductor with a tunable wide band gap, Physics Letters A 382 (2018) 710-715. http://www.sciencedirect.com/science/article/pii/S0375960118300549
[27] M. Naseri, SiP2S monolayer: A two dimensional semiconductor with a moderate band gap, Chemical Physics Letters 715 (2019) 100-104. https://www.sciencedirect.com/science/article/pii/S0009261418309448
[28] H. Alborznia, M. Naseri, N. Fatahi, Buckling strain effects on electronic and optical aspects of penta-graphene nanostructure, Superlattices and Microstructures 133 (2019) 106217. https://doi.org/10.1016/j.spmi.2019.106217
[29] H. Alborznia, M. Naseri, N. Fatahi, Pressure effects on the optical and electronic aspects of T-Carbon: A first principles calculation, Optik 180 (2019) 125-133. https://www.sciencedirect.com/science/article/pii/S0030402618318321
[30] D.M. Hoat, S. Amirian, H. Alborznia, A. Laref, A.H. Reshak, M. Naseri, Strain effect on the electronic and optical properties of 2D Tetrahexcarbon: a DFT-based study, Indian Journal of Physics (2021). https://doi.org/10.1007/s12648-020-01913-1
[31] G. Paolo, et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter 21 (2009) 395502. http://stacks.iop.org/0953-8984/21/i=39/a=3 95502
[32] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, L.D. Marks, An augmented Plane Wave+Local Orbitals Program for calculating crystal properties revised edition WIEN2k 13.1 (release 06/26/2013) Wien2K users guide. ISBN 3-9501031-1-2. https://www.scholars.northwestern.edu/en/publications/wien2k-an-augmented-plane-wave-plus-local-orbitals-program-for-ca
[33] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77 (1996) 3865-3868. https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
[34] J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, The Journal of Chemical Physics 118 (2003) 8207-8215. https://doi.org/10.1063/1.1564060
[35] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B 13 (1976) 5188-5192. https://link.aps.org/doi/10.1103/PhysRevB.13.5188
[36] H. Ehrenreich, M.H. Cohen, Self-Consistent Field Approach to the Many-Electron Problem. Physical Review 115 (1959) 786-790. https://link.aps.org/doi/10.1103/PhysRev.115.786
[37] F. Birch, Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high-temperature domain, Journal of Geophysical Research: Solid Earth 91 (1986) 4949-4954. https://doi.org/10.1029/JB091iB05p04949
[38] Y. Li, Y. Liao, Z. Chen, Be2C Monolayer with Quasi-Planar Hexacoordinate Carbons: A Global Minimum Structure. Angewandte Chemie International Edition, 53 (2014) 7248-7252. https://doi.org/10.1002/anie.201403833
[39] H.R. Alborznia, S.T. Mohammadi, Investigation of electronic and optical properties of novel graphene-like GeS2 monolayer by density function theory, Iranian Journal of Physics Research 20 (2020) 259-265. http://ijpr.iut.ac.ir/article_1614.html
[40] R. Abt, C. Ambrosch-Draxl, P. Knoll, Optical response of high temperature superconductors by full potential LAPW band structure calculations, Physica B: Condensed Matter 194-196 (1994) 1451-1452. http://www.sciencedirect.com/science/article/pii/0921452694912254
[41] N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nature Materials 13 (2014) 897-903. https://doi.org/10.1038/nmat4014