کمیت های ترمودینامیکی و سطح مقطع باقی مانده تبخیر ایزوتوپهای فوق سنگینg 272Ds and 273Rبا استفاده از مدل سیستم های دوهسته ای

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

گروه فیزیک هسته‌ای، دانشکدة علوم پایه، دانشگاه مازندران، بابلسر، ایران

چکیده

دراین پژوهش با استفاده از مدل سیستم دوهسته ای (DNS) سطح مقطع باقیمانده تبخیر دو واکنش همجوشی سرد 64Ni+208Pb و 64Ni+209Bi محاسبه شده است. پتلنسیل هسته ای مورد استفاده در این روش پتانسیل پراکسیمیتی می باشد. در محاسبات انجام شده در این پژوهش، کمیت های ترمودینامیکی هسته های مرکب از قبیل دما و ظرفیت گرمایی با استفاده از تئوری گینزبرگ لاندائو و مدل جابجایی گاز فرمی وابسته به دما بدست آمده اند. نتائج بدست آمده با نتائج تجربی و نتائج تئوری حاصل از روش دیگر مقایسه شده است. همچنین نمودار ظرفیت گرمایی بر حسب دما شکل S مانندی دارد که نشاندهنده شکسته شدن جفت های نوکلئونی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Thermodynamic quantities and evaporation residue cross-section of super heavy isotopes 272Ds and 273Rg using DNS model

نویسندگان [English]

  • Mohammad Reza Pahlavani
  • Mana Masoumi dinan
Department of Physics, Faculty of basic Science,University of Mazandaran, Babolsar, Iran
چکیده [English]

In this study by Using the di-nuclear systems model (DNS), the evaporation residue cross-section of two cold fusion reactions 64Ni+208Pb and 64Ni+209Bi is calculated. ،The nuclear proximity potential is used for interaction between nuclei. In these calculations thermodynamic quantities of compound nuclei such as temperature and heat capacity are obtained using Ginzburg- Landau (EGL) theory and temperature dependent back shifted Fermi gas model (TDP- BSFGM). The obtained results of cross section are compared with experimental data and other data that is obtained using another model. Also, the plot of heat capacity versus temperature has a S-shape form which is indicator of breaking of the nucleonic pairs.

کلیدواژه‌ها [English]

  • Heat capacity
  • Super heavy nuclei
  • Temperature
  • Cross section
[1] S. Hofmann, G. Munzenberg, The discovery of the heaviest elements, Reviews of Modern Physics 72 (2000) 733-767. https://doi.org/10.1103/RevModPhys.72.733
[2] A.K. Nasirov, G. Giardina, G. Mandaglio et.al, Quasifission and fusion-fission in reactions with massive nuclei: Comparison of reactions leading to the Z=120 element, Physical Review C 79 (2009) 024606-1- 024606-10. https://doi.org/10.1103/PhysRevC.79.024606
[3] Y. Arimoto, Fusion hindrance and roles of shell effects in superheavy mass region, Nuclear Physics A 780 (2006) 222-246. https://doi.org/10.1016/j.nuclphysa.2006.09.018
[4] H. Eslamizadeh, M. Pirpour, Studying fusion process of ions with heavy nuclei in the framework of statistical model for synthesis of supperheavy nuclei, Journal of research on many body systems 714 (2017). https://doi.org/10.22055/JRMBS.2017.13298
[5] S. Hofmann, New elements–approaching, Reports on Progress in Physics, 61 (1998) 639-689. https://doi.org/10.1088/00344885/61/6/002
[6] Yu.Ts. Oganessian et al., Physical Review Letters 83, 3154 (1999); Nature 400, 242 (1999); Physics of Atomic Nuclei 63 1679 (2000); Physical Review C 62 041604(R) (2000). https://doi.org/10.1103/PhysRevLett.83.242
[7] Yu.Ts. Oganessian, V.K. Utyonkov, Yu.V. Lobanov, et Al., Observation of the decay of 292116, Physical Review C 63 (2000)011301(R). https://doi.org/10.1103/PhysRevC.63.011301
[8] S. Hofmann, D. Ackermann, A.V. Yeremin. Et al., The reaction 48Ca + 238U → 286112* studied at the GSI-SHIP, European Physical Journal A 32 (2007) 251–260. https://doi.org/10.1140/epja/i2007-10373-x
[9] P. Frobrich, I.I. Gontchar, Langevin description of fusion, deep-inelastic collisions and heavy-ion-induced fission, Physics Reports 292 (1998)131-237. https://doi.org/10.1016/S0370-1573(97)00042-2
[10] V.V. Volkov, Centrifugal fragmentation of a dinuclear system in the process of its evolution toward a compound nucleus, Physics of Atomic Nuclei 70 (2007) 2046–2053. https://doi.org/10.1134/S106377880712006X
[11] G.G. Adamian, N.V. Antonenko, W. Scheid et al., Isotopic dependence of fusion cross sections in reactions with heavy nuclei, Nuclear Physics A 678 (2000) 24-38. https://doi.org/10.1016/S0375-9474(00)00317-1
[12] N.V. Antonenko, E.A. Cherepanov, A.K. Nasirov, V.P. Permjakov, V.V. Volkov, Compound nucleus formation in reactions between massive nuclei: Fusion barrier, Physical Review C 51 (1995)2635-2645. https://doi.org/10.1103/PhysRevC.51.2635
[13] G.G. Adamian, N.V. Antonenko, W. Scheid, Model of competition between fusion and quasi fission in reactions with heavy nuclei, Nuclear Physics A618(1997) 176-198.       https://doi.org/10.1016/S0375-9474(97)88172-9
[14] V.V. Volkov, G.G. Adamian, N.V. Antonenko, E.A. Cherepanov, W. Scheid, Synthesis of superheavy elements and the process of complete fusion of massive nuclei, Nuclear Physics 64 (2001) 1116–1120. https://doi.org/10.1134/1.1383627
[15] G.G. Adamian, N.V. Antonenko, W. Scheid, V.V. Volkov,Fusion cross sections for superheavy nuclei in the dinuclear system concept, Nuclear Physics A 633 (1998) 409-420. https://doi.org/10.1016/S0375-9474(98)00124-9
[16] R.V. Jolos, A.K. Nasirov, A.I. Muminov, The role of the entrance channel in the fusion of massive nuclei, European Physical Journal A 4 (1999) 245-250. https://doi.org/10.1007/s100500050227
[17] G.G. Adamian, N.V. Antonenko, S.P. Ivanova, W. Scheid, Analysis of survival probability of superheavy nuclei, Physical Review C 62 (2000) 064303. https://doi.org/10.1103/PhysRevC.62.064303
[18] Z.Q. Feng, Gen-Ming Jin, J.Q. Li, W. Scheid, Formation of superheavy nuclei in cold fusion reactions, Physical Review C 76 (2007) 044606-1-044606-9. https://doi.org/10.1103/PhysRevC.76.044606
[19] A. Bohr, B.R. Mottelson, Nuclear structure Volume I, Benjamin Reading MA(1969).
[20] T. Von Egidy, H.H. Schmidt, A.N. Behkami, nuclear level densities and level spacing distribution part 2, Nuclear Physics A 481 (1988)189-206. https://doi.org/10.1016/0375-9474(88)90491-5
[21] D. Bucurescu1, T.V. Egid, Correlations between the nuclear level density parameters, Physical Review C 72 (2005) 067304-1-3. https://doi.org/10.1103/PhysRevC.72.067304
[22] T.V. Egidy, D Bucurescu, Physical Erratum: Systematics of nuclear level density parameters, Physical Review C 72 044311 (2005) Review C 73 (2006) 049901-1. https://doi.org/10.1103/PhysRevC.73.049901
[23] A.J. Koning, S. Hilaire, S. Goriely, Global and local level density models, Nuclear Physics A 810 (2008) 13-76. https://doi.org/10.1016/j.nuclphysa.2008.06.005
[24] A. Gilbert, A.G.W. Cameron, A composite nuclear level-density formula with shell corrections, Canadian Journal of Physics 43 (1965) 1446 -1496. https://doi.org/10.1139/p65-139
[25] S.E. Koonin, D.J. Dean, K. Langanke, Shell model monte carlo methods,Physics Reports 278 (1997) 1-77. https://doi.org/10.1016/S0370-1573(96)00017-8
[26] Y. Alhassid, G.F. Bertsch, L. Fang, Nuclear level statistics: Extending shell model theory to higher temperatures, Physical Review C 68 (2003) 044322. https://doi.org/10.1103/PhysRevC.68.044322
[27] R. Razavi, A.N. Behkami, V. Dehghani, Pairing phase transition and thermodynamical quantitie in 148,149Sm, Nuclear Physics A 930 (2014) 57-62. https://doi.org/10.1016/j.nuclphysa.2014.07.016
[28] G. Puddu, P.F. Bortignon, R.A. Broglia, The RPA-SPA Approximation to Level Densities, Annals of Physics 206 (1991) 409-439. https://doi.org/10.1016/0003-4916(91)90006-T
 
[29] H. Attias, Y. Alhassid, The perturbed static path approximation at finitetemperature: observables and strength functions, Nuclear physics A 625 (1997) 565-597. https://doi.org/10.1016/S0375-9474(97)00486-7
[30] N.J. Davidson, S.S. Hsiao, J. Markram, H.G. Miller, Y. Tzeng, A semi-empirical determination of the properties of nuclear matter, Physics Letters B 315 (1993) 12-16. https://doi.org/10.1016/0370-2693(93)90150-G
[31] L.G. Moretto, Statistical dwscription of a paired nucleus with the inclusion of angular momentum, Nuclear Physics A 185 (1972) 145-165. https://doi.org/10.1016/0375-9474(72)90556-8
[32] E.G. Ryabov, A.V. Karpov, P.N. Nadtochy, G.D. Adeev, Application of a temperature-dependent liquid-drop model to dynamical Langevin calculations of fission fragment distributions of excited nuclei, Physical Review C 78 (2008) 044614. https://doi.org/10.1103/PhysRevC.78.044614
[33] L.D. Landau, E.M. Lifshitz, Statistical physics, Pergamon Press, Oxford, (1966).
[34] P. Mohammadi, V. Dehghani, A.A. Mehammandoost-Khajeh-Dad, Applying modified Ginzburg-Landau theory to nuclei, Physical Review C 90 (2014) 054304. https://doi.org/10.1103/PhysRevC.90.054304
[35] M.K.G. Kruse, H.G. Miller, A.R. Plastino, A. Plastino, S. Fujita, Landau-Ginzburg method applied to finite fermion systems: pairing in nuclei, European Physical Journal A 25 (2005) 339-344. https://doi.org/10.1140/epja/i2005-10133-0
[36] A.S. Zubov, G.G. Adamian, N.V. Antonenko, Application of Statistical Methods for Analysis of Heavy-Ion Reactions in the Framework of a Dinuclear System Mode6, Physics of Particles and Nuclei 40 (2009) 847–889. https://doi.org/10.1134/S1063779609060057
[37] G.G. Adamian, N.V. Antonenko, W. Scheid, V.V. Volkov, Fusion cross sections for superheavy nuclei in the dinuclear system concept, Nuclear Physics A 633 (1998) 409-420. https://doi.org/10.1016/S0375-9474(98)00124-9
[38] G. Munzenberg, Recent advances in the discovery of transuranium elements, Reports on Progress in Physics 51 (1988) 57-104. https://doi.org/10.1088/0034-4885/51/1/002
[39] G.G. Adamian, N.V. Antonenko, W. Scheid, V.V. Volkov, Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei, Nuclear Physics A 627 (1997) 361-378. https://doi.org/10.1016/S0375-9474(97)00605-2
[40] Y. Alhassid, G.F. Bertsch, L. Fang, Nuclear level statistics: Extending shell model theory to higher temperatures, Physical Rrview C 68 (2003) 044322-1-11. https://doi.org/10.1103/PhysRevC.68.044322
[41] J. Blocki, W.J. Swiatecki, A generalization of the proximity force theorem, Annals of Physics 132 (1981) 53-65.  https://doi.org/10.1016/0003-4916(81)90268-2
[42] C.L. Guo, G.L. Zhang, X.Y. Le, Study of the universal function of nuclear proximity potential from density-dependent nucleon–nucleon interaction, Nuclear Physics A 897 (2013) 54-61. https://doi.org/10.1016/j.nuclphysa.2012.10.003
[43] M.R. Pahlavani, M. Masoumi Dinan, Thermal properties of 172Yb and 162Dy isotopes in the back-shifted Fermi gas model with temperature-dependent pairing energy, Journal of Physics 93 (2019) 37-47. https://doi.org/10.1007/s12043-019-1799-y
[44] S.A. Alavi,V. Dehghani, Back shifted Fermi gas model with temperature dependent pairing energy: Thermal properties of 98Mo, International Journal of Modern Physics E 25 (2016) 1650065-1-10. https://doi.org/10.1142/S0218301316500658
[45] Z.Q. Feng, G.M. Jin, J.Q. Li, Werner Scheid, Formation of superheavy nuclei in cold fusion reactions, Physical Review C 76 (2007) 044606-1-9. https://doi.org/10.1103/PhysRevC.76.044606