یکسوساز نوری مبتنی بر نقطه کوانتومی و بررسی عوامل مؤثر بر آن

نوع مقاله : مقاله پژوهشی کامل

نویسنده

گروه فیزیک، دانشکده علوم پایه، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران

چکیده

در این مقاله، نشان داده شده است که نقطه کوانتومی قرص شکل که با ناخالصی گاوسی آلاییده شده، می‌تواند بعنوان یک یکسوساز نوری عمل کند. وجود همزمان ناخالصی و اعمال میدان الکتریکی خارجی در نقطه کوانتومی سبب می‌شود که ساختار نامتقارنی داشته باشد. این نقطه کوانتومی نامتقارن، ساختاری می‌باشد که خواص نوری غیرخطی قابل توجهی از جمله یکسوسازی نوری را نشان می‌دهد. همچنین نشان داده شده است که میزان یکسوسازی نوری می‌تواند توسط میدان خارجی و پارامترهای ناخالصی گاوسی (قدرت، طول میرایی و مکان ناخالصی در نقطه کوانتومی) کنترل شود. نتایج محاسبات عددی نشان می‌دهند که میزان یکسوسازی نوری در نقطه کوانتومی آلاییده شده با ناخالصی نوع دافع قویتر از مورد ناخالصی نوع جاذب می-باشد. بعلاوه، مطالعه تأثیر قدرت و جهت میدان الکتریکی اعمال شده بر روی یکسوسازی نوری نشان می‌دهد که با افزایش قدرت میدان، محدودیت حاملین افزایش یافته و در نتیجه میزان یکسوسازی نوری کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Quantum dot-based optical rectifier and investigation of effective factors

نویسنده [English]

  • Parinaz Hosseinpour
Department of physics, Faculty of sciences, Sahand University of Technology, Sahand New Town, Tabriz, Iran
چکیده [English]

n this paper, it has been shown that the doped disk-like quantum dot with Gaussian impurity can operate as an optical rectifier. The simultaneous presence of impurity and the external electric field in the quantum dot causes to an asymmetric structure. The asymmetric quantum dot can exhibit the significant nonlinear optical properties such as optical rectification. Also, it has been shown that the value of the optical rectification can be controlled by the external field and the Gaussian impurity parameters (strength, decay length and impurity position in the quantum dot). The results of the numerical calculations represent that the optical rectification value of doped quantum dot with the repulsive impurity is stronger than the attractive impurity. Furthermore, the study of the effect of strength and direction of the applied electric field on the optical rectification shows that enhancement of the electric field strength causes to more confinement. Therefore, the optical rectification value decreases, when the value of electric field increases.

کلیدواژه‌ها [English]

  • Quantum dot
  • optical rectification
  • Gaussian impurity
  • electric field
[1] R.K. Choubey, R. Trivedi, M. Das, P.K. Sen, P. Sen, S. Kar, K.S. Bartwal, R.A. Ganeev, Growth and study of nonlinear refraction and absorption in Mg doped LiNbO3 single crystals, Crystal Growth 311 (2009) 2597-2601. https://doi.org/10.1016/j.jcrysgro.2009.02.013
[2] A.J. Nozik, Quantum dot solar cells, Physica E 14 (2002) 115-120. https://doi.org/10.1016/S1386-9477(02)00374-0
[3] P. Ramvall, S. Tanaka, S. Nomura, P. Riblet, Y. Aoyagi, Observation of confinement-dependent exciton binding energy of GaN quantum dots, Applied Physics Letter 73 (1998) 1104. https://doi.org/10.1063/1.122098
[4] M.A. Reed, J.N. Randall, R.J. Aggarwal, R.J. Matyi, T.M. Moore, A.E. Wetsel, Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure, Physical Review Letters 60 (1988) 535. https://doi.org/10.1103/PhysRevLett.60.535
[5] K. Kash, A. Scherer, J.M. Worlock, H.C. Craighead, M.C. Tamargo, Optical spectroscopy of ultrasmall structures etched from quantum wells, Applied Physics Letter 49 (1986) 1043. https://doi.org/10.1063/1.97466
[6] H. Brune, M. Giovannini, K. Bromann, K. Kern, Self-organized growth of nanostructure arrays on strain-relief patterns, Nature 394 (1998) 451-453. https://doi.org/10.1038/28804
[7] P. Jansen, Growth of nanostructures by cluster deposition: Experiments and simple models, Review Modern Physics 71 (1999) 1695. https://doi.org/10.1103/RevModPhys.71.1695
[8] L.P. Kouwenhoven, C. Marcus, Quantum dots, Physics World 11 (1998) 35. https://doi.org/10.1088/2058-7058/11/6/26   
[9] L.P. Kouwenhoven A.T. Johnson, N.C. Van der Vaart, C.J.P.M. Harmans, C.T. Foxon, Quantized current in a quantum-dot turnstile using oscillating tunnel barriers, Physical Review Letters 67 (1991) 1626.https://doi.org/10.1103/PhysRevLett.67.1626
[10] A. Zapata, R.E. Acosta, R.E. Mora-Ramos, C.A. Duque, Exciton-related nonlinear optical properties in cylindrical quantum dots with asymmetric axial potential: combined effects of hydrostatic pressure, intense laser field, and applied electric field, Nanoscale Research Letter 7 (2012) 508. https://doi.org/10.1186/1556-276X-7-508
[11] C.H. Liu, B.R. Xu, Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot, Physics Letter A 372 6 (2008) 888-892. https://doi.org/10.1016/j.physleta.2007.08.046
[12] G. Liu, K. Guo, Q. Wu, J.H. Wu, Polaron effects on the optical rectification and the second harmonic generation in cylindrical quantum dots with magnetic field, Superlattices and Microstructures 53 (2013) 173-183. https://doi.org/10.1016/j.spmi.2012.09.007
[13] S. Shao, K.X. Guo, Z.H. Zhang, N. Li, C. Peng, Third-harmonic generation in cylindrical quantum dots in a static magnetic field, Solid State Communication 151 (2011) 289-292. https://doi.org/10.1016/j.ssc.2010.12.003
[14] A.S. Sachrajda, Y. Feng, R.P. Taylor, G. Kirczenow, L. Henning, J. Wang, P. Zawadzki, P.T. Coleridge, Magnetoconductance of a nanoscale antidote, Physical Review B 50 (1994) 10856.https://doi.org/10.1103/PhysRevB.50.10856
[15] V. Margulis, A.V. Shorokhov, Hybrid–impurity resonances in anisotropic quantum dots, Physica E 41 (2009) 483-486. https://doi.org/10.1016/j.physe.2008.09.020
[16] V.D. Jovanovic, D. Indjin, N. Vukmirovic, Z. Lkonic, P. Harrison, E.H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worall, H.A. Beere, D.A. Ritchie, Mechanisms of dynamic range limitations in GaAs∕AlGaAs quantum-cascade lasers: Influence of injector doping, Applied Physics Letter 86 (2005) 211117. https://doi.org/10.1063/1.1937993
[17] E. Mujagic, M. Austerer, S. Schartner, M. Nobile, L.K. Hoffmann, W. Schrenk, G. Strasser, M.P. Semtsiv, I. Bayrakli, M. Wienold, W.T. Masselink, Impact of doping on the performance of short-wavelength InP-based quantum cascade lasers, Applied Physics 103 (2008) 033104. https://doi.org/10.1063/1.2837871
[18] P.G. Bolcatto, C.R. Proetto, Shape and dielectric mismatch effects in semiconductor quantum dots, Physical Review B 59 (1999) 12487.https://doi.org/10.1103/PhysRevB.59.12487
[19] S. Bednarek, K. Lis, B. Szafran, Quantum dot defined in a two-dimensional electron gas at a n−AlGaAs/GaAs heterojunction: Simulation of electrostatic potential and charging properties, Physical Review B 77 (2008) 115320. https://doi.org/10.1103/PhysRevB.77.115320
[20] A. Kwasniowski, J. Adamowski, Effect of confinement potential shape on exchange interaction in coupled quantum dots, Physics Condensed Matter 20 (2008) 215208. https://doi.org/10.1088/09538984/20/21/215208
[21] S. Baskoutas, E. Paspalakis, A.F. Terzis, Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field, Physics Condensed Matter 19 (2007) 395024. https://doi.org/10.1088/09538984/19/39/395024
[22] B. Cakir, Y. Yakar, A. Ozmen, M.O. Sezer, M. Sahin, Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot, Supperlattices and Microstructure 47 (2010) 556-566. https://doi.org/10.1016/j.spmi.2009.12.002
[23] S. Shojaei, A. Soltani Vala, Nonlinear optical rectification of hydrogenic impurity in a disk-like parabolic quantum dot: The role of applied magnetic field, Physica E 70 (2015) 108-112.https://doi.org/10.1016/j.physe.2015.01.034
[24] J.H. Yuan, Y. Zhang, X. Guo, J. Zhang, H. Mo, The low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field, Physica E 68 (2015) 232-238. https://doi.org/10.1016/j.physe.2015.01.006
[25] T. Chen, W. Xie, S. Liang, Optical and electronic properties of a two-dimensional quantum dot with an impurity, Luminescence 139 (2013) 64-68. https://doi.org/10.1016/j.jlumin.2013.02.030
[26] S. Liang, W. Xie, X. Li, H. Shen, Photoionization and binding energy of a donor impurity in a quantum dot under an electric field: Effects of the hydrostatic pressure and temperature, Superlattices and Microstructures 49 (2011) 623-631. https://doi.org/10.1016/j.spmi.2011.03.013
[27] L.C. Sugirtham, A.J. Peter, C.W. Lee, Electric field-induced nonlinear optical properties of a hydrogenic impurity in a GaAs/GaAlAs quantum dot: effects of spin–orbit interactions, Phase Transitions 88 (2015) 407-420.https://doi.org/10.1080/01411594.2014.984709
[28] N. Raigoza, A.L. Morales, A. Montes, N. Porras-Montenegro, C.A. Duque, Stress effects on shallow-donor impurity states in symmetrical GaAs/AlxGa1−xAs double quantum wells, Physical Review B 69 (2004) 045323. https://doi.org/10.1103/PhysRevB.69.045323
[29] S. Kang, J. Li, T.Y. Shi, Investigation of hydrogenic-donor states confined by spherical quantum dots with B-splines, Physics B: Atomic, Molecular and Optical Physics 39 (2006) 3491. https://doi.org/10.1088/0953-4075/39/17/007
[30] E. Räsänen, J. Könemann, R.J. Puska, M.J. Puska, R.M. Nieminen, Impurity effects in quantum dots: Toward quantitative modeling, Physical Review B 70 (2004) 115308. https://doi.org/10.1103/PhysRevB.70.115308
[31] J.M. Ferreyra, P. Bosshard, C.R. Proetto, Strong-confinement approach for impurities in parabolic quantum dots, Physical Review B 55 (1997) 13682. https://doi.org/10.1103/PhysRevB.55.13682
[32] P.A. Sundqvist, V. Narayan, S. Stafström, M. Willander, Self-consistent drift-diffusion model of nanoscale impurity profiles in semiconductor layers, quantum wires, and quantum dots, Physical Review B 67 (2003) 165330.https://doi.org/10.1103/PhysRevB.67.165330
[33] S. Baskoutas, E. Paspalakis, A.F. Terzis, Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field, Physics Condensed Matter 19 (2007) 395024. https://doi.org/10.1088/09538984/19/39/395024
[34] T. Ezaki, N. Mori, C. Hamaguchi, Electronic structures in circular, elliptic, and triangular quantum dots, Physical Review B 56 (1997) 6428. https://doi.org/10.1103/PhysRevB.56.6428
 [35] Y. Tokura, S. Sasaki, D. G. Austing, S. Tarucha, Excitation spectra and exchange interactions in circular and elliptical quantum dots, Physica B 298 (2001) 260-266. https://doi.org/10.1016/S0921-4526(01)00313-1
[36] G. Lin, Anisotropic Harmonic Oscillator in a Static Electromagnetic Field, Communications in Theoretical Physics 38 (2002) 667. https://doi.org/10.1088/0253-6102/38/6/667
[37] Y. Qiucheng, G. Kangxian, H. Meilinm, Z. Zhongmin, L. Keyin, L. Dongfeng, Study on the optical rectification and second-harmonic generation with position-dependent mass in a quantum well, Journal of Physics and Chemistry of Solids 119 (2018) 50-55. https://doi.org/10.1016/j.jpcs.2018.03.031
[38] S. Pal, M. Ghosh, Tailoring nonlinear optical rectification coefficient of impurity doped quantum dots by invoking Gaussian white noise, Optical and Quantum Electronics 48 (2016) 372. https://doi.org/10.1007/s11082-016-0640-9
[39] J. Ganguly, M. Ghosh, Modulating optical second harmonic generation of impurity‐doped quantum dots in presence of Gaussian white noise, Physica Status Solidi B 253 (2016) 1093. https://doi.org/10.1002/pssb.201552606
[40] J. Ganguly, S. Saha, A. Bera, M. Ghosh, Modulating optical rectification, second and third harmonic generation of doped quantum dots: Interplay between hydrostatic pressure, temperature and noise, Superlattices and Microstructures 98 (2016) 385. https://doi.org/10.1016/j.spmi.2016.08.052
[41] S. Yilmaz, Nonlinear Optical Rectification and Oscillator Strength in a Spherical Quantum   Dot with an Off-Center Hydrogenic Impurity in Presence of an Applied Electric Field, Computational and Theoretical Nanoscience 10 (2013) 2019. https://doi.org/10.1166/jctn.2013.3163
[42] B. Cakir, Y. Yakar, A. Ozmen, M.O. Sezer, M. Sahin, Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot, Supperlattices and Microstructure 47 (2010) 556-566. https://doi.org/10.1016/j.spmi.2009.12.002
[43] W. Xie, Nonlinear optical rectification of a hydrogenic impurity in a disc-like quantum dot, Physica B 404 (2009) 4142-4145. https://doi.org/10.1016/j.physb.2009.07.177
[44] M. Zaluzny, Saturation of intersubband absorption and optical rectification in asymmetric quantum wells, Applied Physics 74 (1993) 4716.  https://doi.org/10.1063/1.354339
[45] E.I. Rashba, Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop, Soviet Physics Solid State 2 (1960) 1109.
[46] N. Kumar Datta, M. Ghosh, Oscillatory impurity potential induced dynamics of doped quantum dots: Analysis based on coupled influence of impurity coordinate and impurity influenced domain, Chemical Physics 372 (2010) 82. https://doi.org/10.1016/j.chemphys.2010.05.004
[47] N. Kumar Datta, M. Ghosh, Impurity strength and impurity domain modulated frequency‐dependent linear and second non‐linear response properties of doped quantum dots, Physica Status Solidi B 248 (2011) 1941. https://doi.org/10.1002/pssb.201147065
[48] P. Hosseinpour, A. Soltani-Vala, J. Barvestani, Effect of impurity on the absorption of a parabolic quantum dot with including Rashba spin–orbit interaction, Physica E 80 (2016) 48-52. https://doi.org/10.1016/j.physe.2016.01.003