[3] P. Ramvall, S. Tanaka, S. Nomura, P. Riblet, Y. Aoyagi, Observation of confinement-dependent exciton binding energy of GaN quantum dots, Applied Physics Letter 73 (1998) 1104. https://doi.org/10.1063/1.122098
[4] M.A. Reed, J.N. Randall, R.J. Aggarwal, R.J. Matyi, T.M. Moore, A.E. Wetsel, Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure, Physical Review Letters 60 (1988) 535. https://doi.org/10.1103/PhysRevLett.60.535
[5] K. Kash, A. Scherer, J.M. Worlock, H.C. Craighead, M.C. Tamargo, Optical spectroscopy of ultrasmall structures etched from quantum wells, Applied Physics Letter 49 (1986) 1043. https://doi.org/10.1063/1.97466
[6] H. Brune, M. Giovannini, K. Bromann, K. Kern, Self-organized growth of nanostructure arrays on strain-relief patterns, Nature 394 (1998) 451-453. https://doi.org/10.1038/28804
[7] P. Jansen, Growth of nanostructures by cluster deposition: Experiments and simple models, Review Modern Physics 71 (1999) 1695. https://doi.org/10.1103/RevModPhys.71.1695
[9] L.P. Kouwenhoven A.T. Johnson, N.C. Van der Vaart, C.J.P.M. Harmans, C.T. Foxon, Quantized current in a quantum-dot turnstile using oscillating tunnel barriers, Physical Review Letters 67 (1991) 1626.https://doi.org/10.1103/PhysRevLett.67.1626
[10] A. Zapata, R.E. Acosta, R.E. Mora-Ramos, C.A. Duque, Exciton-related nonlinear optical properties in cylindrical quantum dots with asymmetric axial potential: combined effects of hydrostatic pressure, intense laser field, and applied electric field, Nanoscale Research Letter 7 (2012) 508. https://doi.org/10.1186/1556-276X-7-508
[12] G. Liu, K. Guo, Q. Wu, J.H. Wu, Polaron effects on the optical rectification and the second harmonic generation in cylindrical quantum dots with magnetic field, Superlattices and Microstructures 53 (2013) 173-183. https://doi.org/10.1016/j.spmi.2012.09.007
[13] S. Shao, K.X. Guo, Z.H. Zhang, N. Li, C. Peng, Third-harmonic generation in cylindrical quantum dots in a static magnetic field, Solid State Communication 151 (2011) 289-292. https://doi.org/10.1016/j.ssc.2010.12.003
[14] A.S. Sachrajda, Y. Feng, R.P. Taylor, G. Kirczenow, L. Henning, J. Wang, P. Zawadzki, P.T. Coleridge, Magnetoconductance of a nanoscale antidote, Physical Review B 50 (1994) 10856.https://doi.org/10.1103/PhysRevB.50.10856
[16] V.D. Jovanovic, D. Indjin, N. Vukmirovic, Z. Lkonic, P. Harrison, E.H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worall, H.A. Beere, D.A. Ritchie, Mechanisms of dynamic range limitations in GaAs∕AlGaAs quantum-cascade lasers: Influence of injector doping, Applied Physics Letter 86 (2005) 211117. https://doi.org/10.1063/1.1937993
[17] E. Mujagic, M. Austerer, S. Schartner, M. Nobile, L.K. Hoffmann, W. Schrenk, G. Strasser, M.P. Semtsiv, I. Bayrakli, M. Wienold, W.T. Masselink, Impact of doping on the performance of short-wavelength InP-based quantum cascade lasers, Applied Physics 103 (2008) 033104. https://doi.org/10.1063/1.2837871
[18] P.G. Bolcatto, C.R. Proetto, Shape and dielectric mismatch effects in semiconductor quantum dots, Physical Review B 59 (1999) 12487.https://doi.org/10.1103/PhysRevB.59.12487
[19] S. Bednarek, K. Lis, B. Szafran, Quantum dot defined in a two-dimensional electron gas at a n−AlGaAs/GaAs heterojunction: Simulation of electrostatic potential and charging properties, Physical Review B 77 (2008) 115320. https://doi.org/10.1103/PhysRevB.77.115320
[21] S. Baskoutas, E. Paspalakis, A.F. Terzis, Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field, Physics Condensed Matter 19 (2007) 395024. https://doi.org/10.1088/09538984/19/39/395024
[22] B. Cakir, Y. Yakar, A. Ozmen, M.O. Sezer, M. Sahin, Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot, Supperlattices and Microstructure 47 (2010) 556-566. https://doi.org/10.1016/j.spmi.2009.12.002
[23] S. Shojaei, A. Soltani Vala, Nonlinear optical rectification of hydrogenic impurity in a disk-like parabolic quantum dot: The role of applied magnetic field, Physica E 70 (2015) 108-112.https://doi.org/10.1016/j.physe.2015.01.034
[24] J.H. Yuan, Y. Zhang, X. Guo, J. Zhang, H. Mo, The low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field, Physica E 68 (2015) 232-238. https://doi.org/10.1016/j.physe.2015.01.006
[26] S. Liang, W. Xie, X. Li, H. Shen, Photoionization and binding energy of a donor impurity in a quantum dot under an electric field: Effects of the hydrostatic pressure and temperature, Superlattices and Microstructures 49 (2011) 623-631. https://doi.org/10.1016/j.spmi.2011.03.013
[27] L.C. Sugirtham, A.J. Peter, C.W. Lee, Electric field-induced nonlinear optical properties of a hydrogenic impurity in a GaAs/GaAlAs quantum dot: effects of spin–orbit interactions, Phase Transitions 88 (2015) 407-420.https://doi.org/10.1080/01411594.2014.984709
[28] N. Raigoza, A.L. Morales, A. Montes, N. Porras-Montenegro, C.A. Duque, Stress effects on shallow-donor impurity states in symmetrical GaAs/AlxGa1−xAs double quantum wells, Physical Review B 69 (2004) 045323. https://doi.org/10.1103/PhysRevB.69.045323
[30] E. Räsänen, J. Könemann, R.J. Puska, M.J. Puska, R.M. Nieminen, Impurity effects in quantum dots: Toward quantitative modeling, Physical Review B 70 (2004) 115308. https://doi.org/10.1103/PhysRevB.70.115308
[31] J.M. Ferreyra, P. Bosshard, C.R. Proetto, Strong-confinement approach for impurities in parabolic quantum dots, Physical Review B 55 (1997) 13682. https://doi.org/10.1103/PhysRevB.55.13682
[32] P.A. Sundqvist, V. Narayan, S. Stafström, M. Willander, Self-consistent drift-diffusion model of nanoscale impurity profiles in semiconductor layers, quantum wires, and quantum dots, Physical Review B 67 (2003) 165330.https://doi.org/10.1103/PhysRevB.67.165330
[33] S. Baskoutas, E. Paspalakis, A.F. Terzis, Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field, Physics Condensed Matter 19 (2007) 395024. https://doi.org/10.1088/09538984/19/39/395024
[34] T. Ezaki, N. Mori, C. Hamaguchi, Electronic structures in circular, elliptic, and triangular quantum dots, Physical Review B 56 (1997) 6428. https://doi.org/10.1103/PhysRevB.56.6428
[37] Y. Qiucheng, G. Kangxian, H. Meilinm, Z. Zhongmin, L. Keyin, L. Dongfeng, Study on the optical rectification and second-harmonic generation with position-dependent mass in a quantum well, Journal of Physics and Chemistry of Solids 119 (2018) 50-55. https://doi.org/10.1016/j.jpcs.2018.03.031
[38] S. Pal, M. Ghosh, Tailoring nonlinear optical rectification coefficient of impurity doped quantum dots by invoking Gaussian white noise, Optical and Quantum Electronics 48 (2016) 372. https://doi.org/10.1007/s11082-016-0640-9
[39] J. Ganguly, M. Ghosh, Modulating optical second harmonic generation of impurity‐doped quantum dots in presence of Gaussian white noise, Physica Status Solidi B 253 (2016) 1093. https://doi.org/10.1002/pssb.201552606
[40] J. Ganguly, S. Saha, A. Bera, M. Ghosh, Modulating optical rectification, second and third harmonic generation of doped quantum dots: Interplay between hydrostatic pressure, temperature and noise, Superlattices and Microstructures 98 (2016) 385. https://doi.org/10.1016/j.spmi.2016.08.052
[41] S. Yilmaz, Nonlinear Optical Rectification and Oscillator Strength in a Spherical Quantum Dot with an Off-Center Hydrogenic Impurity in Presence of an Applied Electric Field, Computational and Theoretical Nanoscience 10 (2013) 2019. https://doi.org/10.1166/jctn.2013.3163
[42] B. Cakir, Y. Yakar, A. Ozmen, M.O. Sezer, M. Sahin, Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot, Supperlattices and Microstructure 47 (2010) 556-566. https://doi.org/10.1016/j.spmi.2009.12.002
[44] M. Zaluzny, Saturation of intersubband absorption and optical rectification in asymmetric quantum wells, Applied Physics 74 (1993) 4716. https://doi.org/10.1063/1.354339
[45] E.I. Rashba, Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop, Soviet Physics Solid State 2 (1960) 1109.
[47] N. Kumar Datta, M. Ghosh, Impurity strength and impurity domain modulated frequency‐dependent linear and second non‐linear response properties of doped quantum dots, Physica Status Solidi B 248 (2011) 1941. https://doi.org/10.1002/pssb.201147065