سنتز و تعیین خواص نوری خطی و غیر‌خطی شیف باز N’,N-بیس(2-هیدروکسی بنزیلیدن) بنزیدین با استفاده از روش‌های جاروب Z و محاسبات کوانتم

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک، دانشگاه پیام نور، تهران، ایران

2 گروه شیمی، دانشگاه پیام نور، تهران، ایران

چکیده

در این کار، خواص اپتیکی خطی و غیر‌خطی شیف باز N’,N-بیس(2-هیدروکسی بنزیلیدن)بنزیدین (HBB) به دو روش تجربی جاروب Z و محاسبات کوآنتمی مورد بررسی قرار گرفته است. برای این منظور، ابتدا طیف جذبی ترکیب HBB در حلال‌های DMSO، DMF،CH3Cl  تهیه شده و اثر قطبیت حلال و نیز مقدار گاف انرژی آنها مورد بررسی قرار گرفته است. نتایج نشان داده که نمونه حل شده در DMSO خواص غیر‌خطی بهتری نسبت به دیگر نمونه‌ها داشته است. سپس خواص غیر‌خطی نمونه به روش تکنیک جاروب Z محاسبه شده است. نتایج بدست آمده برای نمونه در حلال DMSO، نشان داد که مقدار ضریب شکست غیر‌خطی برابر 0.108×1010-cm2/W ، ضریب جذب غیر‌خطی برابر 0.14361×6-10 cm/W و پذیرفتاری مرتبه سوم برابر 4.437× 9-10 esu می‌باشد. همچنین به‌کمک محاسبات کوآنتمی، میزان گشتاور دوقطبی µ ، قطبش‌پذیری خطی α و همچنین ابرقطبش‌پذیری غیر‌خطی مرتبة دوم و سوم (β وγ) محاسبه شده است. هر دو نتاج به‌دست آمده از روش تجربی و محاسباتی نشان داد که ترکیب HBB از خواص غیر خطی بالایی برخوردار بوده و کاندیدای خوبی برای استفاده در ابزارهای اپتیکی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and study of the linear and nonlinear properties of N,N'-bis (2-hydroxybenzylidene) benzidine using Z-scan technique and quantum mechanical calculations

نویسندگان [English]

  • Abdolrasoul Gharaati 1
  • Yasaman Abed 1
  • Fatemeh Mostaghni 2
1 Department of Physics, Payame Noor University, Tehran, Iran
2 Department of Chemistry, Payame Noor University, Tehran, Iran
چکیده [English]

In this work, the linear and nonlinear optical properties of the Schiff base N,N'-bis(2-hydroxybenzylidene) benzidine (HBB) will be investigated by two methods, Z-scan technique and quantum mechanical calculations. For this purpose, first, the absorption spectrum of HBB compound in DMSO, DMF, CH3Cl is prepared and the effect of solvent polarity on their bandgap energy is investigated. The results show that the dissolved sample in DMSO has better nonlinear properties than other samples. Then, the nonlinear properties of the sample are calculated by the Z-scan technique. The values of the nonlinear refractive index, nonlinear absorption coefficient and third order susceptibility of the sample in DMSO solvent are 0.10810-10 cm2/W, 0.1436110-6 cm/W and 4.43710-9 esu respectively. Also, the quantum mechanical analysis will be used for calculating the dipole moment (), the dipole polarizability (), and also the second and third nonlinear molecular hyperpolarizabilities (β and γ). Both experimental and theoretical results show that the HBB has a high nonlinear potential and can be a good candidate for optical devices.

کلیدواژه‌ها [English]

  • Nonlinear optic
  • Z-scan technique
  • Schiff base
  • hyperpolarizabilitie
  • Density function
[1] M.H. Sadr, V.M. Mohammadi, B. Soltani, K. Jamshidi-Ghaleh, S.Z. Mousavi, Nonlinear optical responses of MoS4Cu4 (PzMe3)6Cl2 under low power CW He-Ne laser excitation, Optik 127 (2016) 6050-6055. https://doi.org/10.1016/j.ijleo.2016.04.051
[2] M. Dehghanipour, M. Khanzadeh, Sh. Aboutalebi, Enhancement of nonlinear absroption and optical limiting properties of graphene oxide in mixed with Fe2O3 nanoparticles, Journal of Research on Many-body Systems 8 18 (2018) 79-86. https://jrmbs.scu.ac.ir/article_13943.html?lang=fa
[3] H.M. Shanshool, M. Yahaya, W.M. Yunus, I.Y. Abdullah, Using Z-scan technique to measure the nonlinear optical properties of PMMA/ZNO nanocomposites, Journal of Teknologi 78 (2016) 33-38. https://doi.org/10.11113/jt.v78.7461
[4] A.N. Castro, L.R. Almeida, M.M. Anjos, G.R. Oliveira, H.B. Napolitano, C. Valverde, B. Baseia, Theoretical study on the third-order nonlinear optical properties and structural characterization of 3-Acetyl-6-Bromocoumarin, Chemical Physics Letter 653 (2016) 122-130. https://doi.org/10.1016/j.cplett.2016.04.070
[5] A. Pron, P. Gawrys, M. Zagorska, D. Djurado, R. Demadrille, Electroactive materials for organic electronics: preparation strategies, structural aspects and characterization techniques, Chemical Society Reviews 39 (2010) 2577-2632. https://doi.org/10.1039/B907999H
[6] A. Mishra, P. Bäuerle, Small molecule organic semiconductors on the move: promises for future solar energy technology, Angewandte Chemie International Edition 51 (2012) 2020-2067. https://doi.org/10.1002/anie.201102326
[7] H. Motiei, A. Jafari, R. Naderali, Third-order nonlinear optical properties of organic azo dyes by using strength of nonlinearity parameter and Z-scan technique, Optics & Laser Technology 88 (2017) 68-74. https://doi.org/10.1016/j.optlastec.2016.09.011
[8] M.I. Yongsheng, L. Pengxia, Y. Zhou, W. Dong, C. Hui, H.E. Wanli, Y. Huai, Effects of donor and acceptor on optoelectronic performance for porphyrin derivatives: Nonlinear optical properties and dye-sensitized solar cells, Chemical Research in Chinese Universities 31 (2015) 992-996. https://doi.org/10.1007/s40242-015-5241-9
[9] G.G. Mohamed, M.A. Zayed, S.M. Abdallah, Metal complexes of a novel Schiff base derived from sulphametrole and varelaldehyde, Synthesis, spectral, thermal characterization and biological activity, Journal of Molecular Structure 979 (2010) 62-71. https://doi.org/10.1016/j.molstruc.2010.06.002
[10] G. Bhargavi, M.V. Rajasekharan, J.P. Costes, J.P. Tuchagues, Synthesis, crystal structure and magnetic properties of dimeric MnIII Schiff base complexes including pseudohalide ligands: Ferromagnetic interactions through phenoxo bridges and single molecule magnetism, Polyhedron 28 (2009) 1253-1260. https://doi.org/10.1016/j.poly.2009.02.024
[11] N. Wazzan, Z. Safi, DFT calculations of the tautomerization and NLO properties of 5-amino-7-(pyrrolidin-1-yl)-2, 4, 4-trimethyl-1, 4-dihydro-1, 6-naphthyridine-8-carbonitrile (APNC), Journal of  Molecular Structure 1143 (2017) 397-404. https://doi.org/10.1016/j.molstruc.2017.04.101
[12] G. Boudebs, V. Besse, C. Cassagne, H. Leblond H, C.B. de Araújo, Nonlinear characterization of materials using the D4σ method inside a Z-scan 4f-system, Optics letters 38 (2013) 2206-2208. https://doi.org/10.1364/OL.38.002206
[13] M. Uthayakumar, A.P. Jeyakumari, A. Dhandapani, V. Shinde, M. Arivanandhan, Synthesis, experimental and computational spectroscopic investigations of third-order nonlinear optical material (E)-N′-(benzo [d][1,3] dioxol-5-ylmethylene) benzohydrazide, Journal of Physics D: Applied Physics 52 (2019) 395102. https://iopscience.iop.org/article/10.1088/1361-6463/ab284b
[14] R. Adair, L.L. Chase, S.A. Payne, Nonlinear refractive-index measurements of glasses using three-wave frequency mixing, JOSA B 4 (1987) 875-881. https://doi.org/10.1364/JOSAB.4.000875
[15] A. Granmayeh Rad, K. Madanipour, A. Koohian, Ag Nanoparticles: Experimental Study of Sign Identification of Nonlinear Refractive Index by Moiré Deflectometry and Z-Scan Methods, ISRN Nanomaterials (2013) 327575. http://dx.doi.org/10.1155/2013/327575
[16] Y. Abed, F. Mostaghni, H. Shafikhani, Investigation of the nonlinear optical properties of the salen-H2 ligand using Z-scan technique, IIOAB Journal 7 (2016) 293-297.
[17] Fishch M.J., et.al. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, (2016).
[18] M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE journal of quantum electronics 26 (1990) 760-769. http://doi.org/10.1109/3.53394
[19] F. Mostaghni, Y. Abed, Synthesis and investigation of nonlinear optical properties of Para Red: Z-scan technique and quantum mechanical calculations, Materials Science-Poland 36 (2018) 445-451. http://doi.org/10.1515/msp-20180039
[20] C. James, A.A. Raj, R. Reghunathan, V.S. Jayakumar, I.H. Joe, Structural conformation and vibrational spectroscopic studies of 2, 6-bis (p-N, N-dimethyl benzylidene) cyclo Hexanone using density functional theory. Journal of Raman Spectroscopy, 37 (2006) 1381-1392. https://doi.org/10.1002/jrs.1554
[21] R. Bhatt, I. Bhaumik, S. Ganesamoorthy, A.K. Karnal, M.K. Swami, H.S. Patel, P.K. Gupta , Urbach tail and bandgap analysis in near stoichiometric LiNbO3 crystals, physica status solidi (a) 209 (2012) 176-80. https://doi.org/10.1002/pssa.201127361
[22] C. Cooper, Organic chemist's desk reference, CRC Press, New York, (2010).
[23] M.S. Zakerhamidi, M.Moghadam, A. Ghanadzadeh, S. Hosseini , Anisotropic and isotropic solvent effects on the dipole moment and photophysical properties of rhodamine dyes, Journal of luminescence 132 (2012) 931-937. https://doi.org/10.1016/j.jlumin.2011.11.027
[24] C. Reichardt, T. Welton, Solvents and solvent effects in organic chemistry, John Wiley & Sons, New York, (2011).
[25] M. Sauer, J. Hofkens, J. Enderlein, Handbook of fluorescence spectroscopy and imaging: from ensemble to single molecules, John Wiley & Sons, New York, (2010).
[26] K.D. Sattler, Handbook of nanophysics: nanoparticles and quantum dot, CRC press, New York, (2016).
[27] F. Mostaghni, 4-(4,5-Diphenyl-1H-imidazole-2-yl)phenol: Synthesis and Estimation of Nonlinear Optical Properties using Z-Scan Technique and Quantum Mechanical Calculations, Journal of Acta Chimica Slovenica 68 (2021) in press. http://dx.doi.org/10.17344/acsi.2020.6299
[28] R.G. Pearson, Absolute electronegativity and hardness: applications to organic chemistry, Journal of Organic Chemistry 54 (1989) 1423-1430. https://doi.org/10.1021/jo00267a034
[29] M.V. Castillo, E. Romano, A.B. Raschi, S.A. Brandán, Frontiers in Computational Chemistry, Bentham Science Publishers, United Arab Emirates (2015).
[30] K.S. Vinod, S. Periandy, M. Govindarajan, Spectroscopic analysis of cinnamic acid using quantum chemical calculations, Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 136 (2015) 808-817. https://doi.org/10.1016/j.saa.2014.09.098
[31] A.D. Buckingham, Permanent and induced molecular moments and long-range intermolecular forces, Advances in Chemical Physics: Intermolecular Forces, John Wiley & Sons, New York, (1967). https://doi.org/10.1002/9780470143582.ch2
[32] M. Targema, N.O. Obi-Egbedi, M.D. Adeoye, Molecular structure and solvent effects on the dipole moments and polarizabilities of some aniline derivatives, Computational and theoretical Chemistry 1012 (2013). 47-53. https://doi.org/10.1016/j.comptc.2013.02.020
[33] S. Haghdani, N. Davari, R. Sandnes, P.O. Åstrand, Complex frequency-dependent polarizability through the π→ π* excitation energy of azobenzene molecules by a combined charge-transfer and point-dipole interaction model, Journal of Physical Chemistry A 118 (2014) 11282-11292. https://doi.org/10.1021/jp507639z
[34] A.M. Andrade, P.L. Inacio, J.A. Camilo, Theoretical investigation of second hyperpolarizability of trans-polyacetylene: comparison between experimental and theoretical results for small oligomers, Journal of chemical physics 143 (2015) 244906. https://doi.org/10.1063/1.4939083