Investigation of structural, electronic and transport properties of III-V nanotubes using by Density Functional Theory

Document Type : Full length research Paper

Author

Department of Physics, , Faculty of science, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran

Abstract

In this study, the structural, electronic and transport properties of the (5, 0) zig-zag BN, GaAs, GaN, GaP, InN and InP nanotubes have been studied using Density Functional Theory (DFT) combined with Non-Equilibrium Green’s Function (NEGF) formalism with SIESTA software. The electronic band structure, density of states (DOS), current-voltage (I-V) characteristics and quantum conductance curves (dI/dV) of these structures were studied under low-bias conditions. The obtained results demonstrate that all of these structures exhibit semiconducting behavior but the (5, 0) zig-zag GaP nanotube has an indirect band gap which makes it suitable to use for full color displays. Instead the (5, 0) zig-zag GaAs nanotube has a smaller band gap, the highest value of the electron density of states and it showed the amazing property of Negative Differential Resistance (NDR). Therefore, it is an important candidate to use in high-speed optoelectronic devices, high-speed switching devices and high frequency oscillators.

Keywords

Main Subjects


[1] J.Ch. Charlier, X. Blasé, S. Roche, Electronic and transport properties of nanotube, Reviews of Modern Physics 79 (2007) 677. https://doi.org/10.1103/RevModPhys.79.677
[2] J. Zhang, S.A. Meguid, On the piezoelectric potential of gallium nitride nanotubes, Nano Energy 12 (2015) 322-330. https://doi.org/10.1016/j.nanoen.2014.12.036
[3] Ch. Lee, Sh. Liu, L. Hurtadu, J.B. Wright, H. Xu, T. Shan Luk, J.J. Figiel, I. Berener, S.R.J. Brueck, G.T. Wang, Annular-shaped emission from gallium nitride nanotube lasers, ACS Photonics 2 (2015) 1025-1029. https://doi.org/10.1021/ACSphotonics.5b00039
[4] L. Guo, Structural, energetic and electronic properties of hydrogenated aluminum arsenide clusters, Journal of Nanoparticle Research 13 (2011) 2029-2039. https://doi.org/10.1007/S11051-010-9957-7
[5] M. Hopkinson, T. Martin, P. Smowton, III-V semiconductor devices integrated with silicon, Semiconductor Science and Technology 28 (2013) 090301. https://doi.org/10.1088/0268-1242/28/9090301
[6] J.C.F. Silva, J.D. Dos Santos, C.A. Taft, J.B.L. Martins, E. Longo, Stability of rolled-up GaAs nanotubes, Journal of Molecular Modeling 23 (2017) 204. https://doi.org/10.1007/S00894-017-3371-3
[7] S. Kalay, Z. Yilmaz, O. Sen, M. Emanet, E. Kazanc, M. Culha, Synthesis of boron nitride nanotubes and their applications, Beilstein journal of nanotechnology 6 (2015) 84-102. https://doi.org/10.3762/bjnano.6.9
[8] D. Jun-Rong, Y.B. Hao, T. Chao, H. Jie, Z. Hai-Ying, A. GaAs planar Schottky varactor diode for left-handed nonlinear transmission line applications, Chinese Physics B 21 (2012) 067303. https://doi.org/10.1088/1674-1056/21/6/067303
[9] G. Ji, L. Hong-Gang, S. Yong-Bo, C. Yu-Xiong, J. Zhi, Physical modeling based on hydrodynamic simulation for the design of InGaAs/InP double heterojunction bipolar transistors, Chinese Physics B 21 (2012) 058501. https://doi.org/10/1088/1674-1056/21/5/058501
[10] Ch. Liang, Q. Yun-sheng, Z. Yi-Jun, Ch. Ben-kang, Comparative research on the transmission-mode GaAs photocathodes of exponential-doping structures, Chinese Physics B 21 (2012) 034214. https://doi.org/10/1088/1674-1056/21/3/034214
[11] G. Li-Ying, L. Yan-Fang, Ch. Wei-Dong, W. Ying-Hui, Topological structure effect on far-infrared spectra in a GaAs/InAs nanoring, Chinese Physics B 21 (2012) 037301. https://doi.org/10.1088/1674-1056/21/3/037301
[12] J.A. Del Alamo, Nanometer-scale electronics with III-V compound semiconductors, Nature 479 (2011) 317-323.  https://doi.org/10.1038/nature10677
[13] K.B. Dhungana, R, Pati, Boron nitride nanotubes for spintronic, Sensors 14 (2014) 17655-17685. https://doi.org/10.3390/S140917655
[14] C. Attaccalite, L. Wirtz, A. Marini, A, Rubio, Efficient gate-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible, Scientific Reports 3 (2013) 2698. https://doi.org/10.1038/Srep02698
[15] C. Attaccalite, L. Wirtz, A. Marini, A. Rubio, Efficient Gait-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible, Scientific Reports 3 (2013) 2698. https://doi.org/10.1063/1.1581370
[16] D.M. Mitin, A.M. Mozharov, S.A. Raudik, V.V. Fedorov, V.V. Neplokh, P.M. Rajanna, V.V. Nasibulin, I.S. Mukhin, Solar cells based on GaAs and carbon nanotubes, Journal of physics: Conference Series 1482 (2020) 012035.  https://doi.org/10.1088/1742-6596/1482/1/012035
[17] M.S. Benbouza, D. Hocine, Y. Zid, A. Benbouza, New nanotechnology structures CNTFET GaAs, 8th international conference on renewable energy research and applications (ICRERA) (2019) 799-803. https://doi.org/10.1109/ICRERA47325.2019.8997103
[18] N.V. Vostokov, V.M. Daniltsev, S.A. Kraev, E.V. Skorokhodov, S.S. Strelchenko, V.I. Shashkin, Vertical field-effect transistor with a controlling GaAs based p-n junction, semiconductors 53 (2019) 1279-1281. https://doi.org/10.1134/S1063782619100245
[19] B. Chandrasekara, K.A. NarayanAnkutty, Gallium nitride nanotube and its application as transistors, International journal of computer applications 47 (2012) 39-44. https://doi.org/10.5120/7259-0347
[20] H. Jiang, Y. Su, J. Zhu, H. Lu, X. Meng, Piezoelectric and pyroelectric properties of intrinsic GaN nanowires and nanotubes: size and shape effects, Nano Energy 45 (2018) 359-367. https://doi.org/10.1016/j.nanoen.2018.01.010
[21] V.I. Gryadun, Characteristics of GaN nanotube MOS field-effect transistors, 22th international Crimean Conference Microwave & Telecommunication Technology, (2012) 729-730.
[22] M. Djavid, X. Liu, Z. Mi, Improvement of the light extraction efficiency of GaN-based LEDs using rolled up nanotube arrays, Optics Express 22 (2014) A1680. https://doi.org/10.1364/OE.22.0A1680
[23] E. De Luca, R. Sanatinia, S. Anand, M. Swillo, Focused ion beam milling of gallium phosphide nanostructures for photonic applications, Optical Materials Express 6 (2016) 587-596. https://doi.org/10.1364/OME.6.000587
[24] G. Grinblat, M.P. Nielsen, P. Dichtl, Y. Li, R.F. Oulton, S.A. Maier, Ultrafast sub-30-fs all-optical switching based on gallium phosphide, Science Advances 5 (2019) eaaw3262. https://doi.org/10.1126/sciadv.aaw3262 
[25] O. Malik, F.J.D.L. Hidalga-Wade, C. Zuniga-Islas, J.H.A. Patino, UV-sensitive optical sensors based on ITO-gallium phosphide heterojunctions, Physics status solidi C 7 (2010) 1176-1179. https://doi.org/10.1002/pssc.200982697
[26] S. Askari, D. Mariotti, J. Eric Stehr, J. Benedikt, J. Kraudy, U. Helmersson, Low-loss and tunable localized mide-inferared plasmons in nanocrystals of highly degenerate InN, Nano Letters 92 (2018) 5681-5687. https://doi.org/10.1021/acs.nanolett.8b02260
[27] T. Itoh, A. Kobayashi, J. Ohta, H. Fujioka, High-current-density indium nitride ultrathin-film transistors on glass substrates, Applied Physics Letters 109 (2016) 142104. https://doi.org/10.1063/1.4964422
[28] B.A. Andreev, K.E. Kudryavtsev, A.N. YablonSkiy, P.A. Bushuykin, L.V. Krasilnikova, E.V. Skorokhodov, P.A. Yunin, A.V. Novikov, V. Yu Davydov, Z.F. Krasilnik, Towards the indium nitride laser: obtaining infrared stimulated emission from planer monocrystalline InN structures, Scientific Reports 8 (2018) 9454. https://doi.org/10.1038/s41598-018-27911-2
[29] J. Ajayan, D. Nirmal, R. Mathew, D. Kurian, P. Mohankumar, L. Arivazhagan, D. Ajitha, A critical review of design and fabrication challenges in INP HEMTs for future terahertz frequency applications, Materials science in semiconductor 128 (2021) 105753. https://doi.org/10.1016/j.mssp.2021.105753
[30] F. Zafar, A. Iqbal, Indium phosphide nanowires and their applications in optoelectronic devices, Proceedings of the royal society A 472 (2016). https://doi.org/10.1098/rspa.2015.0804
[31] G. Faroz, A. Malik, M.A. Kharadi, F.A. Kanday, K.A. Shah, Performance analysis of indium phosphide channel based sub-10 nm double gate spin field effect transistor, Physics Letters A 384 (2020) 126498. https://doi.org/10.1016/j.physleta.2020.126498
[32] J. Klamkin, H. Zhao, B. Song, Y. Liu, B. Isaac, S. Pinna, F. Sang, L. Coldren, Indium phosphide photonic integrated circuits: Technology and applications, 2018 IEEE BiCMOS and compound semiconductor integrated circuits and technology symposium (BCICTS) (2018) 8-13. https://doi.org/10.1109/BCICTS.2018.8550947
[33] J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, The SIESTA method for ab initio order-N materials simulation, Journal of Physics: Condensed Matter 14 (2002) 2745. https://doi.org/10.1088/0953-8984/14/11/302
[34] J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximation for many-electron systems, Physics Review B 23 (1981) 5048. https://doi.org/10.1103/PhysRevB.23.5048
[35] N. Troullier, J.L. Martins, Efficient pseudopotentials for plan-wave calculations, Physical Review B 43 (1991) 1993. https://doi.org/10.1103/PhysRevB.43.1993
[36] M. Melli, M. West, S. Hickman, S. Dhuey, D. Lin, M. Khorasaninejad, Ch. Chang, S. Jolly, H. Tae, E. Poliakov, P. St. Hilaire, S. cabrini, Ch. Peroz, M. Klug, Gallium phosphide optical metasurfaces for visible light applications, Scientific Reports 10 (2020) 20694. https://doi.org/10.1038/S41598-020-77753-0
[37] J.F. Jia, H. Sh. Wu, H. Jiao, The structure and electronic property of BN nanotube, Physica B: Condensed Matter 381 (2006) 90-95. https://doi.org/10.1016/j.physb.2005.12.258
[38] D. Dey, D. De, First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes, International Journal of Nano Dimansion 9 (2018) 134-144.
[39] Kh. Kavita Rao, S. Anurag, K. Rajnish, Electronic properties of GaN nanotube: Ab initio study, Journal of Computational and Theoretical Nanoscience 10 (2013) 2066-2070. https://doi.org/10.1166/jctn.2013.3169
[40] A. Srivastava, S.K. Jain, P.S. Khare, Ab-initio study of structural, electronic and transport properties of zigzag GaP nanotubes, Journal of Molecular Modeling 20 (2014) 2171. https://doi.org/10.1007/s00894-014-2171-2
[41] Z. Tavangar, M. Hamadanian, H. Basharnavaz, Variation of the electronic properties of zigzag boron nanotubes by Al-doping: A DFT study, Molecular Physics 114 (2016) 2936-2943. https://doi.org/10.1080/00268976.2016.1210259
[42] R. Fathi, T. Movlarooy, Electronic and structural properties of semiconductor GaAs nanotubes, Journal of Electronic Materials 47 (2018) 7358-7364. https://doi.org/10.1007/s1164-018-6675-x
[43] L.B. Shi, H.K. Yuan, A study on structure and electronic properties of single-wall GaN nanotubes, Advanced materials Research 347-353 (2012) 3489-3492. https://doi.org/10.4028/www.scientific.net/MAR.347-353.3489
[44] N.T. Tien, P.T.B. Thao, V.T. Phuc, R. Ahuja, Influence of edge termination on the electronic and transport properties of sawtooth penta-graphene nanoribbons, Journal of physics and chemistry of solids 146 (2020) 109528. https://doi.org/10.1016/j.jpcs.2020.109528
[45] T. Huo, H. Yin, D. Zhou, L. Sun, T. Tian, H. Wei, N. Hu, Z. Yang, Y. Zhang, Y. Su, self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions, Acs Sustainable chemistry & engineering 8 (2020) 15532-15539. https://doi.org/10.1021/acssuschemeng.0c04495
[46] G. Kang, H.J. Choi, F. Ren, J. Ao, H. Li, Y. Li, W. Du, K. Zhou, H. Tan, D. Huh, P. Li, M. Liang, S. Gao, Ch. Tang, X. Yi, H. Lee, Z. Liu, Fabrication of InGaN/GaN nanotube based photoanode using nano-imprint lithography and secondary sputtering process for water splitting, Japanese journal of applied physics 58 (2019). https://doi.org/10.7567/1347-4065/ab293e
[47] W.Q. Hua, Z. Peng, L.D. sheng, Low bias negative differential resistance behavior in carbon/boron nitride nanotube heterostructures, Chinese Physics letters 30 (2013) 107304. http://doi.org/ 10.1088/025-307X/30/10/107304