[1] J.Ch. Charlier, X. Blasé, S. Roche, Electronic and transport properties of nanotube, Reviews of Modern Physics 79 (2007) 677. https://doi.org/10.1103/RevModPhys.79.677
[2] J. Zhang, S.A. Meguid, On the piezoelectric potential of gallium nitride nanotubes, Nano Energy 12 (2015) 322-330. https://doi.org/10.1016/j.nanoen.2014.12.036
[3] Ch. Lee, Sh. Liu, L. Hurtadu, J.B. Wright, H. Xu, T. Shan Luk, J.J. Figiel, I. Berener, S.R.J. Brueck, G.T. Wang, Annular-shaped emission from gallium nitride nanotube lasers, ACS Photonics 2 (2015) 1025-1029. https://doi.org/10.1021/ACSphotonics.5b00039
[7] S. Kalay, Z. Yilmaz, O. Sen, M. Emanet, E. Kazanc, M. Culha, Synthesis of boron nitride nanotubes and their applications, Beilstein journal of nanotechnology 6 (2015) 84-102. https://doi.org/10.3762/bjnano.6.9
[8] D. Jun-Rong, Y.B. Hao, T. Chao, H. Jie, Z. Hai-Ying, A. GaAs planar Schottky varactor diode for left-handed nonlinear transmission line applications, Chinese Physics B 21 (2012) 067303. https://doi.org/10.1088/1674-1056/21/6/067303
[9] G. Ji, L. Hong-Gang, S. Yong-Bo, C. Yu-Xiong, J. Zhi, Physical modeling based on hydrodynamic simulation for the design of InGaAs/InP double heterojunction bipolar transistors, Chinese Physics B 21 (2012) 058501. https://doi.org/10/1088/1674-1056/21/5/058501
[10] Ch. Liang, Q. Yun-sheng, Z. Yi-Jun, Ch. Ben-kang, Comparative research on the transmission-mode GaAs photocathodes of exponential-doping structures, Chinese Physics B 21 (2012) 034214. https://doi.org/10/1088/1674-1056/21/3/034214
[11] G. Li-Ying, L. Yan-Fang, Ch. Wei-Dong, W. Ying-Hui, Topological structure effect on far-infrared spectra in a GaAs/InAs nanoring, Chinese Physics B 21 (2012) 037301. https://doi.org/10.1088/1674-1056/21/3/037301
[12] J.A. Del Alamo, Nanometer-scale electronics with III-V compound semiconductors, Nature 479 (2011) 317-323. https://doi.org/10.1038/nature10677
[14] C. Attaccalite, L. Wirtz, A. Marini, A, Rubio, Efficient gate-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible, Scientific Reports 3 (2013) 2698. https://doi.org/10.1038/Srep02698
[15] C. Attaccalite, L. Wirtz, A. Marini, A. Rubio, Efficient Gait-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible, Scientific Reports 3 (2013) 2698. https://doi.org/10.1063/1.1581370
[16] D.M. Mitin, A.M. Mozharov, S.A. Raudik, V.V. Fedorov, V.V. Neplokh, P.M. Rajanna, V.V. Nasibulin, I.S. Mukhin, Solar cells based on GaAs and carbon nanotubes, Journal of physics: Conference Series 1482 (2020) 012035. https://doi.org/10.1088/1742-6596/1482/1/012035
[17] M.S. Benbouza, D. Hocine, Y. Zid, A. Benbouza, New nanotechnology structures CNTFET GaAs, 8th international conference on renewable energy research and applications (ICRERA) (2019) 799-803. https://doi.org/10.1109/ICRERA47325.2019.8997103
[18] N.V. Vostokov, V.M. Daniltsev, S.A. Kraev, E.V. Skorokhodov, S.S. Strelchenko, V.I. Shashkin, Vertical field-effect transistor with a controlling GaAs based p-n junction, semiconductors 53 (2019) 1279-1281. https://doi.org/10.1134/S1063782619100245
[19] B. Chandrasekara, K.A. NarayanAnkutty, Gallium nitride nanotube and its application as transistors, International journal of computer applications 47 (2012) 39-44. https://doi.org/10.5120/7259-0347
[20] H. Jiang, Y. Su, J. Zhu, H. Lu, X. Meng, Piezoelectric and pyroelectric properties of intrinsic GaN nanowires and nanotubes: size and shape effects, Nano Energy 45 (2018) 359-367. https://doi.org/10.1016/j.nanoen.2018.01.010
[21] V.I. Gryadun, Characteristics of GaN nanotube MOS field-effect transistors, 22th international Crimean Conference Microwave & Telecommunication Technology, (2012) 729-730.
[22] M. Djavid, X. Liu, Z. Mi, Improvement of the light extraction efficiency of GaN-based LEDs using rolled up nanotube arrays, Optics Express 22 (2014) A1680. https://doi.org/10.1364/OE.22.0A1680
[23] E. De Luca, R. Sanatinia, S. Anand, M. Swillo, Focused ion beam milling of gallium phosphide nanostructures for photonic applications, Optical Materials Express 6 (2016) 587-596. https://doi.org/10.1364/OME.6.000587
[24] G. Grinblat, M.P. Nielsen, P. Dichtl, Y. Li, R.F. Oulton, S.A. Maier, Ultrafast sub-30-fs all-optical switching based on gallium phosphide, Science Advances 5 (2019) eaaw3262. https://doi.org/10.1126/sciadv.aaw3262
[25] O. Malik, F.J.D.L. Hidalga-Wade, C. Zuniga-Islas, J.H.A. Patino, UV-sensitive optical sensors based on ITO-gallium phosphide heterojunctions, Physics status solidi C 7 (2010) 1176-1179. https://doi.org/10.1002/pssc.200982697
[26] S. Askari, D. Mariotti, J. Eric Stehr, J. Benedikt, J. Kraudy, U. Helmersson, Low-loss and tunable localized mide-inferared plasmons in nanocrystals of highly degenerate InN, Nano Letters 92 (2018) 5681-5687. https://doi.org/10.1021/acs.nanolett.8b02260
[27] T. Itoh, A. Kobayashi, J. Ohta, H. Fujioka, High-current-density indium nitride ultrathin-film transistors on glass substrates, Applied Physics Letters 109 (2016) 142104. https://doi.org/10.1063/1.4964422
[28] B.A. Andreev, K.E. Kudryavtsev, A.N. YablonSkiy, P.A. Bushuykin, L.V. Krasilnikova, E.V. Skorokhodov, P.A. Yunin, A.V. Novikov, V. Yu Davydov, Z.F. Krasilnik, Towards the indium nitride laser: obtaining infrared stimulated emission from planer monocrystalline InN structures, Scientific Reports 8 (2018) 9454. https://doi.org/10.1038/s41598-018-27911-2
[29] J. Ajayan, D. Nirmal, R. Mathew, D. Kurian, P. Mohankumar, L. Arivazhagan, D. Ajitha, A critical review of design and fabrication challenges in INP HEMTs for future terahertz frequency applications, Materials science in semiconductor 128 (2021) 105753. https://doi.org/10.1016/j.mssp.2021.105753
[31] G. Faroz, A. Malik, M.A. Kharadi, F.A. Kanday, K.A. Shah, Performance analysis of indium phosphide channel based sub-10 nm double gate spin field effect transistor, Physics Letters A 384 (2020) 126498. https://doi.org/10.1016/j.physleta.2020.126498
[32] J. Klamkin, H. Zhao, B. Song, Y. Liu, B. Isaac, S. Pinna, F. Sang, L. Coldren, Indium phosphide photonic integrated circuits: Technology and applications, 2018 IEEE BiCMOS and compound semiconductor integrated circuits and technology symposium (BCICTS) (2018) 8-13. https://doi.org/10.1109/BCICTS.2018.8550947
[33] J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, The SIESTA method for ab initio order-N materials simulation, Journal of Physics: Condensed Matter 14 (2002) 2745. https://doi.org/10.1088/0953-8984/14/11/302
[36] M. Melli, M. West, S. Hickman, S. Dhuey, D. Lin, M. Khorasaninejad, Ch. Chang, S. Jolly, H. Tae, E. Poliakov, P. St. Hilaire, S. cabrini, Ch. Peroz, M. Klug, Gallium phosphide optical metasurfaces for visible light applications, Scientific Reports 10 (2020) 20694. https://doi.org/10.1038/S41598-020-77753-0
[38] D. Dey, D. De, First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes, International Journal of Nano Dimansion 9 (2018) 134-144.
[39] Kh. Kavita Rao, S. Anurag, K. Rajnish, Electronic properties of GaN nanotube: Ab initio study, Journal of Computational and Theoretical Nanoscience 10 (2013) 2066-2070. https://doi.org/10.1166/jctn.2013.3169
[40] A. Srivastava, S.K. Jain, P.S. Khare, Ab-initio study of structural, electronic and transport properties of zigzag GaP nanotubes, Journal of Molecular Modeling 20 (2014) 2171. https://doi.org/10.1007/s00894-014-2171-2
[41] Z. Tavangar, M. Hamadanian, H. Basharnavaz, Variation of the electronic properties of zigzag boron nanotubes by Al-doping: A DFT study, Molecular Physics 114 (2016) 2936-2943. https://doi.org/10.1080/00268976.2016.1210259
[44] N.T. Tien, P.T.B. Thao, V.T. Phuc, R. Ahuja, Influence of edge termination on the electronic and transport properties of sawtooth penta-graphene nanoribbons, Journal of physics and chemistry of solids 146 (2020) 109528. https://doi.org/10.1016/j.jpcs.2020.109528
[45] T. Huo, H. Yin, D. Zhou, L. Sun, T. Tian, H. Wei, N. Hu, Z. Yang, Y. Zhang, Y. Su, self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions, Acs Sustainable chemistry & engineering 8 (2020) 15532-15539. https://doi.org/10.1021/acssuschemeng.0c04495
[46] G. Kang, H.J. Choi, F. Ren, J. Ao, H. Li, Y. Li, W. Du, K. Zhou, H. Tan, D. Huh, P. Li, M. Liang, S. Gao, Ch. Tang, X. Yi, H. Lee, Z. Liu, Fabrication of InGaN/GaN nanotube based photoanode using nano-imprint lithography and secondary sputtering process for water splitting, Japanese journal of applied physics 58 (2019). https://doi.org/10.7567/1347-4065/ab293e
[47] W.Q. Hua, Z. Peng, L.D. sheng, Low bias negative differential resistance behavior in carbon/boron nitride nanotube heterostructures, Chinese Physics letters 30 (2013) 107304. http://doi.org/ 10.1088/025-307X/30/10/107304