بررسی جذب یک سویه فلوئور بر روی گرافن به روش دینامیک مولکولی

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

گروه فیزیک، دانشکده مهندسی انرژی و فیزیک، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

جذب فلوئور بر گرافن سبب تنظیم شکاف انرژی و در نتیجه گرافن آلائیده به فلوئور یکی از ترکیباتی است که موجب کاربردی شدن گرافن در صنایع الکترونیک می‌شود. در این مقاله نقش دما و غلظت اتم‌های فلوئور بر فرآیند جذب یک سویه صفحه گرافن و دو سویه آن بررسی شده است. نتایج این مطالعه نشان می‌دهند که تعداد اتم‌های فلوئور که جذب صفحه گرافن می‌شوند با افزایش غلظت گاز فلوئور تا مقدار معینی افزایش می‌یابند و سپس با افزایش بیشتر غلظت ثابت باقی می-مانند. همچنین با افزایش دما تا حدی که ساختار گرافن مختل نشود، سبب افزایش تعداد پیوندهای C-F می‌شود. همچنین مشاهده شد که چیدمان فلوئورهای جذب شده چنان است که از افزایش اختلال در توازن بین دو زیر شبکه گرافن جلوگیری شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dynamics of fluorine atoms in a single-sided fluorination process on graphene: a molecular dynamics study

نویسندگان [English]

  • Sarina Yousefbeigi
  • Farah Marsusi
  • yalda pedram
Department of Energy Engineering and Physics, of Amirkabir university of technology, Tehran, Iran
چکیده [English]

The absorption of fluorine on the graphene surface controls the energy gap. As a result, fluorinated graphene can be a valuable material for electronic applications. Based on molecular dynamics (MD) simulations, the effect of concentration and temperature on the absorption process of fluorine atoms on the graphene surface is investigated. Results show that the number of fluorine atoms absorbed on the graphene surface increases to a certain amount with the concentration of atomic fluorine gas. Further increases in atomic concentration show no effect. The number of C-F bonds increases by temperature so that the structure of the graphene is not disturbed. The adsorbed-fluorine atoms are arranged in a manner that compensates for the imbalance between the two sublattices.

کلیدواژه‌ها [English]

  • Molecular dynamics
  • Graphene
  • Fluorinated Graphene
  • Single-sided adsorption
[1] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, B.H. Hong. Large-scale pattern growth of graphene films for stretchable transparent electrodes Nature 457 (2009) 706-710. https://doi.org/10.1038/nature07719
[2] W. Jin. Electronic Structure and Surface Physics of Two-dimensional Material Molybdenum Disulfide. Doctoral dissertation, Columbia University (2017). https://doi.org/10.7916/D8BC4047
[3] D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, K.S. Novoselov. Control of graphene's properties by reversible hydrogenation: evidence for grapheme, Science 323 (2009) 610-613. https://doi.org/10.1126/science.1167130
[4] L.A. Openov, A.I. Podlivaev. Thermal desorption of hydrogen from graphane, Technical Physics Letters 36 (2010) 31-33. https://doi.org/10.1134/S1063785010010104
[5] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, R.S. Ruoff. Preparation and characterization of graphene oxide paper, Nature 448 (2007) 457-460.https://doi.org/10.1038/nature06016
[6] B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, Z. Liu. Photochemical chlorination of grapheme, ACS nano 5 (2011) 5957-5961. https://doi.org/10.1021/nn201731t
[7] R.R. Nair, W. Ren, R. Jalil, I. Riaz, V.G. Kravets, L. Britnell, M.I. Katsnelson. Fluorographene: a two‐dimensional counterpart of Teflon, Small 6 (2010) 2877-2884. https://doi.org/10.1002/smll.201001555
[8] J.T. Robinson, J.S. Burgess, C.E. Junkermeier, S.C. Badescu, T.L. Reinecke, F.K. Perkins, E.S. Snow, Properties of fluorinated graphene films, Nano letters 10 (2010) 3001-3005. https://doi.org/10.1021/nl101437p
[9] F. Marsusi, N.D. Drummond, M.J. Verstraete. The physics of single-side fluorination of graphene: DFT and DFT+ U studies, Carbon 144 (2019) 615-627. https://doi.org/10.1016/j.carbon.2018.12.089
[10] H.Y. Liu, Z.F. Hou, C.H. Hu, Y. Yang, Z.Z. Zhu. Electronic and magnetic properties of fluorinated graphene with different coverage of fluorine, The Journal of Physical Chemistry C 116 (2012) 18193-18201. https://doi.org/10.1021/jp303279r
[11] T.L. Makarova, A.L. Shelankov, A.A. Zyrianova, A.I. Veinger, T.V. Tisnek, E. Lähderanta, D.V. Pinakov. Edge state magnetism in zigzag-interfaced graphene via spin susceptibility measurements, Scientific reports 5 (2015) 13382. https://doi.org/10.1038/srep13382
[12] R. Paupitz, P.A.S. Autreto, S.B. Legoas, S.G. Srinivasan, A.C.T. van Duin, D.S. Galvao. Graphene to fluorographene and fluorographane: a theoretical study, Nano-technology 24 (2012) 035706. https://doi.org/10.1088/0957-4484/24/3/035706
[13] R. Langer, D. Zaoralova, M. Medved’, P. Banáš, P. Błoński, M. Otyepka. Variability of C–F Bonds Governs the Formation of Specific Structural Motifs in Fluorinated Graphenes, The Journal of Physical Chemistry C 123 (2019) 27896-27903. https://doi.org/10.1021/acs.jpcc.9b07552
[14] S.H. Cheng, K. Zou, F. Okino, H.R. Gutierrez, A. Gupta, N. Shen, J. Zhu. Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semi-conductor, Physical Review B 81 (2010) 205435. https://doi.org/10.1103/PhysRevB.81.205435
[15] A.C.T. Van Duin, S. Dasgupta, F. Lorant, W.A. Goddard. ReaxFF: a reactive force field for hydrocarbons, The Journal of Physical Chemistry A 105 (2001) 9396-9409. https://doi.org/10.1021/jp004368u
[16] A.C. Van Duin, S.J.S. Damsté. Computational chemical investigation into isorenieratene cyclisation, Organic Geochemistry 34 (2003) 515-526. https://doi.org/10.1016/S0146-6380(02)00247-4
[17] K. Chenoweth, A.C.T. Van Duin, W.A. Goddard. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation, The Journal of Physical Chemistry A 112 (2008) 1040-1053. https://doi.org/10.1021/jp709896w
[18] A. Sadeghi, M. Neek-Amal, G.R. Berdiyorov, F.M. Peeters. Diffusion of fluorine on and between graphene layers, Physical Review B 91 (2015) 014304. https://doi.org/10.1103/PhysRevB.91.014304
[19] R.M. Guzmán-Arellano, A.D. Hernández-Nieves, C.A. Balseiro, G. Usaj. Diffusion of fluorine adatoms on doped grapheme, Applied Physics Letters 105 (2014) 121606. https://doi.org/10.1063/1.4896511
[20] F. Marsusi, M.J. Verstraete. Localization of electrons and magnetization in fluoro-graphene: A DFT+ U study, ArXiv (2017) 1709.09363. http://arxiv-export-lb.library.cornell.edu/abs/1709.09363
[21] W. Feng, P. Long, Y. Feng, Y. Li. Two‐Dimensional Fluorinated Graphene: Synthesis, structures, properties and applications, Advanced Science 3 (2016) 1500413. https://doi.org/10.1002/advs.201500413
[22] E.H. Lieb. Two theorems on the Hubbard model, Physical Review Letter 62 (1989) 1201. https://doi.org/10.1103/PhysRevLett.62.1201
[23] Y. Pedram, F. marsusi, S. Yousefbeigi. The study of melting and desorption process of single-sided and both-sided fluorinated graphene using molecular dynamics, Journal of reaserch on many body systems 11 3 (2021) 142-164. https://dx.doi.org/10.22055/jrmbs.2021.17015
[24] S. Behzad, R. Chegel. Investigation of the electro-optical properties of graphene with BC3 substrate, Journal of reaserch on many body systems 8 16 (2018) 21-27. https://dx.doi.org/10.22055/jrmbs.2018.13633
[25] A. Behrouzikia, A. Shafiekhani. Theoretical study of effect of nickel and gold impurities on electronic properties of graphene using Density functional theory, Journal of reaserch on many body systems 9 1 (2019) 25-32. https://dx.doi.org/10.22055/jrmbs.2019.14584