[2] C. Liu, S.T. Navale, Z.B. Yang, M. Galluzzi, V.B. Patil, P.J. Cao, F.J. Stadler. Ethanol gas sensing properties of hydrothermally grown α-MnO2 nanorods, Journal of Alloys and Compounds 727 (2017) 362-369. http://dx.doi.org/10.1016/j.jallcom.2017.08.150
[3] D. Barreca, F. Gri, A. Gasparotto, G. Carraro, L. Bigiani, T. Altantzis, C. Maccato. Multi-functional MnO2 nanomaterials for photo-activated applications by a plasma-assisted fabrication route, Nanoscale 11 1 (2019) 98-108. http://dx.doi.org/10.1039/C8NR06468G
[4] X. Liu, C. Chen, Y. Zhao, B. Jia. A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries, Journal of Nanomaterials (2013). http://dx.doi.org/10.1155/2013/736375
[5] S.D. Hutagalung, N.H. Sahrol, Z.A. Ahmad, M.F. Ain, M. Othman, Effect of MnO2 additive on the dielectric and electromagnetic interference shielding properties of sintered cement-based ceramics, Ceramics International 38 1 (2012) 671-678. http://dx.doi.org/10.1016/j.ceramint.2011.07.055
[6] H. Wang, Z. Lu, D. Qian, Y. Li, W. Zhang. Single-crystal α-MnO2 nanorods: synthesis and electrochemical properties, Nanotechnology 18 11 (2007) 115616. http://dx.doi.org/10.1088/0957-4484/18/11/115616/meta
[7] S.A. Alzahrani, S.A. Al-Thabaiti, W.S. Al-Arjan, M.A. Malik, Z. Khan. Preparation of ultra- long α-MnO2 and Ag@ MnO2 nanoparticles by seedless approach and their photocatalytic performance, Journal of Molecular Structure 1137 (2017) 495-505. http://dx.doi.org/10.1016/j.molstruc.2017.02.068
[8] C. Liu, S.T. Navale, Z.B. Yang, M. Galluzzi, V.B. Patil, P.J. Cao, F.J. Stadler. Ethanol gas sensing properties of hydrothermally grown α-MnO2 nanorods, Journal of Alloys and Compounds 727 (2017) 362-369. http://dx.doi.org/10.1016/j.jallcom.2017.08.150
[10] W. Liu, H. Ge, Z. Gu, X. Lu, J. Li, J. Wang. Electrochemical Deposition Tailors the Catalytic Performance of MnO2-Based Micromotors, Small 14 45 (2018) 1802771. http://dx.doi.org/10.1002/smll.201802771
[12] S. Devaraj, N. Munichandraiah. Electrochemical supercapacitor studies of nanostructured α-MnO2 synthesized by microemulsion method and the effect of annealing. Journal of the Electrochemical Society 154 2 (2006) A80. https://iopscience.iop.org/article/10.1149/1.2404775/meta
[13] T. Chhabra, A. Kumar, A. Bahuguna,V. Krishnan. Reduced graphene oxide supported MnO2 nanorods as recyclable and efficient adsorptive photocatalysts for pollutantsremoval, Vacuum 160 (2019) 333-346. http://dx.doi.org/10.1016/j.vacuum.2018.11.053
[14] X. Zhang, W. Yang, J. Yang, D.G. Evans. Synthesis and characterization of α-MnO2 nanowires: Self-assembly and phase transformation to β-MnO2 microcrystals, Journal of Crystal Growth 310 3 (2008) 716-722. http://dx.doi.org/10.1016/j.jcrysgro.2007.11.113
[15] X. Wang, S. Ni, G. Zhou, X. Sun, F. Yang, J. Wang, D. He. Facile synthesis of ultra-long α-MnO2 nanowires and their microwave absorption properties, Materials Letters 64 13 (2010) 1496-1498. http://dx.doi.org/10.1016/j.matlet.2010.04.002
[16] L. Song, Y. Duan, J. Liu, H. Pang. Insight into electromagnetic absorbing performance of MnO2 from two dimensions: Crystal structure and morphology design, Materials Characterization 163 (2020) 110300. http://dx.doi.org/10.1016/j.matchar.2020.110300
[17] M. Zhou, X. Zhang, J. Wei, S. Zhao, L. Wang, B. Feng. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchin like α-MnO2 nanostructures, The Journal of Physical Chemistry C 115 5(2011) 1398-1402. http://dx.doi.org/10.1021/jp106652x
[18] S.I. Shah, T. Khan, R. Khan, S.A. Khan, S.A. Khattak, G. Khan. Study of structural, optical and dielectric properties of α-MnO2 nanotubes (NTS), Journal of Materials Science: Materials in Electronics 30 21 (2019) 19199-19205. http://dx.doi.org/10.1007/s10854-019-02277-x
[19] W. Xiao, H. Xia, J.Y. Fuh, L. Lu. Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties, Journal of Power Sources 193 2 (2009) 935-938. http://dx.doi.org/10.1016/j.jpowsour.2009.03.073
[20] S.E. Mousavi Ghahfarokhi, E. Mohammadzadeh Shobegar, M. Zargar Shoushtari. Investigating the effect of sintering time on the structural, magnetic and dielectric properties of strontium spinel ferrite nanoparticles (SrFe2O4) fabricated by sol-gel method, Journal of Research on Many-body Systems 8 17 (2018) 167- 180 http://dx.doi.org/10.22055/JRMBS.2018.13897
[21] M. Mumtaz, M. Hassan, L. Ali, Z. Ahmad, M.A. Imtiaz, M.F. Aamir, K. Nadeem. Comparative study of frequency-dependent dielectric properties of ferrites MFe2O4 (M=Co, Mg, Cr and Mn) nanoparticles, Applied Physics A 126 5 (2020) 1-14. http://dx.doi.org/10.1021/jp106652x10.1007/s00339-020-03529-y
[22] R. Jabbar, S.H. Sabeeh, A.M. Hameed. Structural, dielectric and magnetic properties of Mn+2 doped cobalt ferrite nanoparticles, Journal of Magnetism and Magnetic Materials 494 (2020) 165726. http://dx.doi.org/10.1021/jp106652x10.1016/j.jmmm.2019.165726
[23] M.A. Khan, M.Q. Uz Zaman, A. Majeed, M.N. Akhtar, W. Abbas. Structural, spectral, dielectric and magnetic properties of Sr2CuxNi2-xFe28-xCrxO46 (0≤ x≥ 0.5) ferrites synthesized via micro-emulsion route, Materials Chemistry and Physics 259 (2021) 124066. http://dx.doi.org/10.1016/j.matchemphys.2020.124066
[25] M.R. Mahmoudian, Y. Alias, W.J. Basirun, P.M. Woi, M. Sookhakian. Facile preparation of MnO2 nanotubes/reduced graphene oxide nanocomposite for electrochemical sensing of hydrogen peroxide, Sensors and Actuators B: Chemical 201 (2014) 526-534. http://dx.doi.org/10.1016/j.snb.2014.05.030
[27] N. Tang, X. Tian, C. Yang, Z. Pi, Q. Han. Facile synthesis of α-MnO2nanorods for high-performance alkaline batteries, Journal of Physics and Chemistry of Solids 713 (2010) 258-262. http://dx.doi.org/10.1016/j.jpcs.2009.11.016
[28] D. Soundararajan, Y.I. Kim, J.H. Kim, K.H. Kim, J.M. Ko, Hydrothermal Synthesis and Electrochemical Characteristics of Crystalline α-MnO2 Nanotubes, Science of Advanced Materials 4 8 (2012) 805-812. http://dx.doi.org/10.1166/sam.2012.1348
[29] T. Yousefi, A.N. Golikand, M.H. Mashhadizadeh, M. Aghazadeh, Template-free synthesis of MnO2 nanowires with secondary flower like structure: Characterization and supercapacitor behavior studies, Current Applied Physics 12 1 (2012) 193-198. http://dx.doi.org/10.1016/j.cap.2011.05.038
[30] S.E. Mousavi Ghahfarokhi, M.R. Larki, I. Kazeminezhad, The effect of Mn doped on the structural, magnetic, dielectric and optical properties of bismuth ferrite (BiFe1-xMnxO3), nanoparticles 173 (2020) 109143. http://dx.doi.org/10.1016/j.vacuum.2019.109143
[31] S.V. Durai, E. Kumar, D. Muthuraj, V.B. Jothy, Investigation on Electrical and Structural Properties of Manganese Dioxide Nanoparticles, Journal of Nano-and Electronic Physics 12 3 (2020). http://dx.doi.org/10.21272/jnep.12(3).03011