ساخت نانوساختارهای MnO2 و بررسی خواص ساختاری و دی‌الکتریکی آن‌ها

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

در این مطالعه، نانوساختارهای یک بعدی MnO2، از جمله نانومیله، نانولوله و نانوسیم به‌روش آبی-حرارتی تهیه و توسط آنالیز پراش پرتو x، طیف‌سنج مادون قرمز- تبدیل فوریه، میکروسکوپ الکترون روبشی و آنالیز خودالقاء-ظرفیت-مقاومت مشخصه‌یابی شدند. نتایج الگوهای پراش نشان می‌دهند که نمونه‌های ساخته شده تک فاز هستند. تصاویر SEM به‌خوبی تشکیل نانومیله، نانولوله و نانوسیم را نشان می‌دهد. نتایج آنالیز خودالقاء-ظرفیت-مقاومت نشان می‌دهد که ثابت دی‌الکتریک و اتلاف دی‌الکتریک در فرکانس‌های پایین، به‌علت مقاومت الکتریکی بالا در مرزدانه‌ها، زیاد و در فرکانس‌های بالا، به‌علت مقاومت الکتریکی پایین در دانه‌ها، کم می‌باشد. همچنین رسانندگی نانوساختارهای MnO2 با افزایش فرکانس، به‌دلیل فرآیند جهش بین +4MnMn3+/ افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fabrication of MnO2 nanostructures and study of their structural and dielectric properties

نویسندگان [English]

  • Fateme Hamalzadeh Ahmadi
  • ٍٍSeyed Ebrahim Mousavi Ghahfarokhi
2PhD student., Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz
چکیده [English]

Abstract
In this study, one-dimensional MnO2 nanostructures such as nanorods, nanotubes, and nanowires have been synthesized by the hydrothermal method. MnO2 nanostructures have been characterized by x-ray diffraction, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and meter LCR.The results of the XRD show that MnO2 nanostructures are single phase. Also, the SEM images well shows the nanostructures such as nanorods, nanotubes, and nanowires have been formed. The LCR meter results show that the dielectric constant and dielectric loss at the low frequencies are due to high electrical resistance at the grains boundaries while at the high frequencies are due to small electrical resistance at the grains with electrical resistance is low. The ac electric conductivity of the -MnO2 nanostructures by increasing frequency, have been increased that this increase are due to the hopping process between 〖Mn〗^(3+)/〖Mn〗^(4+).

کلیدواژه‌ها [English]

  • Nanostructures (Nanorods
  • Nanotubes
  • and Nanowires)
  • Dielectric properties
  • Hydrothermal Method
[1] S. Ahmed, Z. H.Khan, M. Rafat. Studies on MnO2 nanorods and their application for supercapacitor, Current Nanomaterials 2 (2017) 45-52. http://dx.doi.org/10.2174/2405461502666170405170331
[2] C. Liu, S.T. Navale, Z.B. Yang, M. Galluzzi, V.B. Patil, P.J. Cao, F.J. Stadler. Ethanol gas sensing properties of hydrothermally grown α-MnO2 nanorods, Journal of Alloys and Compounds 727 (2017) 362-369. http://dx.doi.org/10.1016/j.jallcom.2017.08.150
[3] D. Barreca, F. Gri, A. Gasparotto, G. Carraro, L. Bigiani, T. Altantzis, C. Maccato. Multi-functional MnO2 nanomaterials for photo-activated applications by a plasma-assisted fabrication route, Nanoscale 11 1 (2019) 98-108. http://dx.doi.org/10.1039/C8NR06468G
[4] X. Liu, C. Chen, Y. Zhao, B. Jia. A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries, Journal of Nanomaterials (2013). http://dx.doi.org/10.1155/2013/736375
[5] S.D. Hutagalung, N.H. Sahrol, Z.A. Ahmad, M.F. Ain, M. Othman, Effect of MnO2 additive on the dielectric and electromagnetic interference shielding properties of sintered cement-based ceramics, Ceramics International 38 1 (2012) 671-678. http://dx.doi.org/10.1016/j.ceramint.2011.07.055
[6] H. Wang, Z. Lu, D. Qian, Y. Li, W. Zhang. Single-crystal α-MnO2 nanorods: synthesis and electrochemical properties, Nanotechnology 18 11 (2007) 115616. http://dx.doi.org/10.1088/0957-4484/18/11/115616/meta
[7] S.A. Alzahrani, S.A. Al-Thabaiti, W.S. Al-Arjan, M.A. Malik, Z. Khan. Preparation of ultra- long α-MnO2 and Ag@ MnO2 nanoparticles by seedless approach and their photocatalytic performance, Journal of Molecular Structure 1137 (2017) 495-505. http://dx.doi.org/10.1016/j.molstruc.2017.02.068
[8] C. Liu, S.T. Navale, Z.B. Yang, M. Galluzzi, V.B. Patil, P.J. Cao, F.J. Stadler. Ethanol gas sensing properties of hydrothermally grown α-MnO2 nanorods, Journal of Alloys and Compounds 727 (2017) 362-369. http://dx.doi.org/10.1016/j.jallcom.2017.08.150
[9] W. Tang, X. Shan, S. Li, H. Liu, X. Wu, Y. Chen. Sol–gel process for the synthesis of ultrafine MnO2 nanowires and nanorods, Materials Letters 132 (2014) 317-32. http://dx.doi.org/10.1016/j.matlet.2014.05.211
[10] W. Liu, H. Ge, Z. Gu, X. Lu, J. Li, J. Wang. Electrochemical Deposition Tailors the Catalytic Performance of MnO2-Based Micromotors, Small 14 45 (2018) 1802771. http://dx.doi.org/10.1002/smll.201802771
[11] P. Kanha, P. Saengkwamsawang, Effect of stirring time on morphology and crystalline features of MnO2 nanoparticles synthesized by co-precipitation method, Inorganic and Nano-Metal Chemistry 47 8(2017) 1129-1133. http://dx.doi.org/10.1080/24701556.2017.1284100
[12] S. Devaraj, N. Munichandraiah. Electrochemical supercapacitor studies of nanostructured α-MnO2 synthesized by microemulsion method and the effect of annealing. Journal of the Electrochemical Society 154 2 (2006) A80. https://iopscience.iop.org/article/10.1149/1.2404775/meta
[13] T. Chhabra, A. Kumar, A. Bahuguna,V. Krishnan. Reduced graphene oxide supported MnO2 nanorods as recyclable and efficient adsorptive photocatalysts for pollutantsremoval, Vacuum 160 (2019) 333-346. http://dx.doi.org/10.1016/j.vacuum.2018.11.053
[14] X. Zhang, W. Yang, J. Yang, D.G. Evans. Synthesis and characterization of α-MnO2 nanowires: Self-assembly and phase transformation to β-MnO2 microcrystals, Journal of Crystal Growth 310 3 (2008) 716-722. http://dx.doi.org/10.1016/j.jcrysgro.2007.11.113
[15] X. Wang, S. Ni, G. Zhou, X. Sun, F. Yang, J. Wang, D. He. Facile synthesis of ultra-long α-MnO2 nanowires and their microwave absorption properties, Materials Letters 64 13 (2010) 1496-1498. http://dx.doi.org/10.1016/j.matlet.2010.04.002
[16] L. Song, Y. Duan, J. Liu, H. Pang. Insight into electromagnetic absorbing performance of MnO2 from two dimensions: Crystal structure and morphology design, Materials Characterization 163 (2020) 110300. ‏http://dx.doi.org/10.1016/j.matchar.2020.110300
[17] M. Zhou, X. Zhang, J. Wei, S. Zhao, L. Wang, B. Feng. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchin like α-MnO2 nanostructures, The Journal of Physical Chemistry C 115 5(2011) 1398-1402.‏ http://dx.doi.org/10.1021/jp106652x
[18] S.I. Shah, T. Khan, R. Khan, S.A. Khan, S.A. Khattak, G. Khan. Study of structural, optical and dielectric properties of α-MnO2 nanotubes (NTS), Journal of Materials Science: Materials in Electronics 30 21 (2019) 19199-19205. http://dx.doi.org/10.1007/s10854-019-02277-x
[19] W. Xiao, H. Xia, J.Y. Fuh, L. Lu. Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties, Journal of Power Sources 193 2 (2009) 935-938.‏ http://dx.doi.org/10.1016/j.jpowsour.2009.03.073
[20] S.E. Mousavi Ghahfarokhi, E. Mohammadzadeh Shobegar, M. Zargar Shoushtari. Investigating the effect of sintering time on the structural, magnetic and dielectric properties of strontium spinel ferrite nanoparticles (SrFe2O4) fabricated by sol-gel method, Journal of Research on Many-body Systems 8 17 (2018) 167- 180 http://dx.doi.org/10.22055/JRMBS.2018.13897
[21] M. Mumtaz, M. Hassan, L. Ali, Z. Ahmad, M.A. Imtiaz, M.F. Aamir, K. Nadeem. Comparative study of frequency-dependent dielectric properties of ferrites MFe2O4 (M=Co, Mg, Cr and Mn) nanoparticles, Applied Physics A 126 5 (2020) 1-14. http://dx.doi.org/10.1021/jp106652x10.1007/s00339-020-03529-y
[22] R. Jabbar, S.H. Sabeeh, A.M. Hameed. Structural, dielectric and magnetic properties of Mn+2 doped cobalt ferrite nanoparticles, Journal of Magnetism and Magnetic Materials 494 (2020) 165726. http://dx.doi.org/10.1021/jp106652x10.1016/j.jmmm.2019.165726
[23] M.A. Khan, M.Q. Uz Zaman, A. Majeed, M.N. Akhtar, W. Abbas. Structural, spectral, dielectric and magnetic properties of Sr2CuxNi2-xFe28-xCrxO46 (0≤ x≥ 0.5) ferrites synthesized via micro-emulsion route, Materials Chemistry and Physics 259 (2021) 124066.  http://dx.doi.org/10.1016/j.matchemphys.2020.124066
[24] G. Cao, L. Su, X. Zhang, H. Li. Hydrothermal synthesis and catalytic properties of α-and β-MnO2 nanorods, Materials Research Bulletin 45 4 (2010) 425-428. http://dx.doi.org/10.1016/j.materresbull.2009.12.016
[25] M.R. Mahmoudian, Y. Alias, W.J. Basirun, P.M. Woi, M. Sookhakian. Facile preparation of MnO2 nanotubes/reduced graphene oxide nanocomposite for electrochemical sensing of hydrogen peroxide, Sensors and Actuators B: Chemical 201 (2014) 526-534. http://dx.doi.org/10.1016/j.snb.2014.05.030
[26] G. Cheng, L. Yu, B. Lan, M. Sun, T. Lin, Z. Fu, B. Xu. Controlled synthesis of α-MnO2 nanowires and their catalytic performance for toluene combustion, Materials Research Bulletin 75 (2016) 17-24. http://dx.doi.org/10.1016/j.materresbull.2015.11.017
[27] N. Tang, X. Tian, C. Yang, Z. Pi, Q. Han. Facile synthesis of α-MnO2nanorods for high-performance alkaline batteries, Journal of Physics and Chemistry of Solids 713 (2010) 258-262. http://dx.doi.org/10.1016/j.jpcs.2009.11.016
[28] D. Soundararajan, Y.I. Kim, J.H. Kim, K.H. Kim, J.M. Ko, Hydrothermal Synthesis and Electrochemical Characteristics of Crystalline α-MnO2 Nanotubes, Science of Advanced Materials 4 8 (2012) 805-812. http://dx.doi.org/10.1166/sam.2012.1348
[29] T. Yousefi, A.N. Golikand, M.H. Mashhadizadeh, M. Aghazadeh, Template-free synthesis of MnO2 nanowires with secondary flower like structure: Characterization and supercapacitor behavior studies, Current Applied Physics 12 1 (2012) 193-198.  http://dx.doi.org/10.1016/j.cap.2011.05.038
[30] S.E. Mousavi Ghahfarokhi, M.R. Larki, I. Kazeminezhad, The effect of Mn doped on the structural, magnetic, dielectric and optical properties of bismuth ferrite (BiFe1-xMnxO3), nanoparticles 173 (2020) 109143. http://dx.doi.org/10.1016/j.vacuum.2019.109143
[31] S.V. Durai, E. Kumar, D. Muthuraj, V.B. Jothy, Investigation on Electrical and Structural Properties of Manganese Dioxide Nanoparticles, Journal of Nano-and Electronic Physics 12 3 (2020). http://dx.doi.org/10.21272/jnep.12(3).03011