Thermodynamic Geometry of an ideal gas with Taam- Dancoff deformed statistics

Document Type : Full length research Paper

Authors

1 Department of Physics, University of Mohaghegh Ardabili, Ardabil, Iran

2 Department of Physics, Faculty of Basic Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

We consider the thermodynamic properties of a system with particles obeying bosonic and fermionic Taam-Dancoff oscillator algebra. We construct the thermodynamic parameters space and using the metric elements of this space, we work out a quantity which is called the thermodynamic curvature. We will show that the statistical intrinsic interaction of deformed bosons (fermions) is attractive (repulsive) in full physical range and for all values of deformation parameter and deduce that the deformation parameter does not affect the statistical intrinsic interaction. Using the singular points of curvature, we obtain the deformation parameter dependent critical value of fugacity for bosonic system. We show that the singular points coincide with the condensation phase transition points of deformed gas.

Keywords


[1] W.H. Huang, Boson-fermion transmutation and the statistics of anyons, Physical Review E 51 (1995) 3729-3730. https://doi.org/10.1103/PhysRevE.51.3729
[2] J.N. Ginocchio, I. Talmi, On the correspondence between fermion and boson states and operators, Nuclear Physics A 337 (1980) 431-444. https://doi.org/10.1016/0375-9474(80)90152-9
[3] T. Kostyrko, J. Ranninger, Spectral properties of the boson-fermion model in the superconducting state, Physical Review B 54, 13105-13120.  https://doi.org/10.1103/PhysRevB.54.13105
[4] D.S. Tang, Formal relations between classical superalgebras and fermion–boson creation and annihilation operators, Journal of Mathematical Physics 25 (1984) 2966-2973.   https://doi.org/10.1063/1.526047
[5] D.C. Tsui, H.L. Stormer, A.C. Gossard, Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Physical Review Letters 48 (1982) 1559-1562. https://doi.org/10.1103/PhysRevLett.48.1559

[6] F. Wilczek, Magnetic Flux, Angular Momentum, and Statistics, Physical Review Letters 48 (1982) 1144-1146. https://doi.org/10.1103/PhysRevLett.48.1144

[7] F. Wilczek, Quantum Mechanics of Fractional Spin Particles, Physical Review Letters 49 (1982) 957-959. https://doi.org/10.1103/PhysRevLett.49.957
[8] T. Ando, Y. Matsumoto, Y. Uemura, Theory of Hall Effect in a Two- Dimensional Electron System, Journal of the Physical Society of Japan 39 (1975) 279-288.   https://doi.org/10.1143/JPSJ.39.279
[9] K.V. Klitzing, G. Dorda, M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Physical Review Letters 45 (1980) 494-497. https://doi.org/10.1103/PhysRevLett.45.494
[10] A.P. Polychronakos, Probabilities and path-integral realization of exclusion statistics, Physics Letters B 365 (1996) 202-206. https://doi.org/10.1016/0370-2693(95)01302-4
[11] O.W. Greenberg, Example of infinite statistics, Physical Review Letters 64 (1990) 705-708.. https://doi.org/10.1103/PhysRevLett.64.705
[12] H.S. Green, A Generalized Method of Field Quantization, Physical Review 90 (1953) 270-273. https://doi.org/10.1103/PhysRev.90.270
[13] O.W. Greenberg, Particles with small violations of Fermi or Bose statistics, Physical Review D 43 (1991) 4111-4120. https://doi.org/10.1103/PhysRevD.43.4111
[14] H. Mohammadzadeh, Y. Azizian-Kalandaragh, N. Cheraghpour, F. Adli, Thermodynamic geometry, condensation and Debye model of two-parameter deformed statistics, Journal of statistical mechanics: Theory and Experiment (2017) 083104. https://doi.org/10.1088/1742-5468/aa7ee0
[15] A. Algin, E. Ilik, Low-temperature thermo statistics of Tamm– Dancoff deformed boson oscillators, Physics Letters A 377 (2013) 1797–1803. https://doi.org/10.1016/j.physleta.2013.05.013
[16] W. Chung, A. Algin, Duality of boson and fermion: New intermediate-statistics, Physics Letters A 381 (2017) 1797–1803. https://doi.org/10.1016/j.physleta.2017.08.028
[17] L. Tisza, Generalized thermodynamics, Cambridge, Mass: M.I.T. Press, (1966).

[18] F. Weinhold, Metric geometry of equilibrium thermodynamics, The Journal of Chemical Physics 63 (1975) 2479-2483. https://doi.org/10.1063/1.431689

[19] G. Ruppeiner, Thermodynamics: a Riemannian geometric model, Physical Review A 20 (1979) 1608-1613. https://doi.org/10.1103/PhysRevA.20.1608
[20] G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory, Reviews of Modern Physics 67 (1995) 605-609.
https://doi.org/10.1103/RevModPhys.67.605
[21] H. Mohammadzadeh, F. Adli, S. Nouri, Perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases, Physical Review E 94 (2016) 062118. https://doi.org/10.1103/PhysRevE.94.062118
[22] B. Mirza, H. Mohammadzadeh, Nonperturbative thermodynamic geometry of anyon gas, Physical Review E 80 (2009) 011132. https://doi.org/10.1103/PhysRevE.80.011132
[23] H. Janyszek, R. Mrugaa, Riemannian geometry and stability of ideal quantum gases, Journal of Physics A: Mathematical and General 23 (1990) 467-476. https://doi.org/10.1088/0305-4470/23/4/016
[24] W. Janke, D.A. Johnston, R. Kenna, Information geometry of the spherical model, Physical Review E 67, (2003) 046106. https://doi.org/10.1103/PhysRevE.67.046106
[25] B. Mirza, H. Mohammadzadeh, Thermodynamic geometry of fractional statistics, Physical Review E 82 (2010) 031137. https://doi.org/10.1103/PhysRevE.82.031137
[26] G. Ruppeiner, Thermodynamic curvature and phase transitions in Kerr-Newman black holes, Physical Review D 78, (2008) 024016. https://doi.org/10.1103/PhysRevD.78.024016
[27] F. Adli, H. Mohammadzadeh, M.N. Najafi, Z. Ebadi, Nonperturbative thermodynamic geometry of nonextensive statistics, International Journal of Geometric Methods in Modern Physics, 16, (2019) 1950069. https://doi.org/10.1142/S0219887819500695
[28] Z. Ebadi, H. Mohammadzadeh, R. Rozedar Moghaddam, M. Amiri, Thermodynamic geometry, transition between attractive and repulsive interactions and condensation of dual statistics, Journal of Statistical Mechanics: Theory and Experiment, 8, (2020) 083106. https://doi.org/10.1088/1742-5468/aba689
[29] H. Mehri-Dehnavi, H. Mohammadzadeh, Thermodynamic Geometry of Kanadiakis Statistics, Journal of Physics A: Theoretical and Mathematical, 53, (2020) 375009. https://doi.org/10.1088/1751-8121/aba98a
[30] G. Ruppeiner, A. Seftas, Thermodynamic Curvature of the binary van der Waals Fluid, Entropy 22 (2020) 1208. https://doi.org/10.3390/e22111208
[31] G. Ruppeiner, P. Mausbach, H.O. May, Thermodynamic Geometry of the Gaussian Core Model Fluid, Fluid Phase Equilibria, (2020) 113033. https://doi.org/10.1016/j.fluid.2021.113033
[32] A. Mcfarlan, On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q, Journal of Physics A: Mathematical and general 22 (1989) 4581. https://doi.org/10.1088/0305-4470/22/21/020
[33] W.S. Chung, A. Algin, q-Deformed Tamm Dancoff oscillators: Coherent state and thermostatistics, International Journal of Modern Physics B 28 (2014) 1450130. https://doi.org/10.1142/S0217979214501306
[34] W.S. Chung, A. Algin, q-Deformed Tamm Dancoff oscillators: Representation, Fermionic extension and physical application, International Journal of Modern Physics B 29 (2015) 1550177. https://doi.org/10.1142/S0217979215501775
 
[35] P. Salamon, J. Nulton, E. Ihrig, On the relation between entropy and energy versions of thermodynamic length, The Journal of Chemical Physics 80 (1984) 438. https://doi.org/10.1063/1.446467
[36] R.K. Pathria, P.D. Beale, Statistical Mechanics, Elsevier, New York, (2011).
[37] B. Mirza, H. Mohammadzadeh, Thermodynamic geometry of deformed bosons and fermions, Journal of Physics A: Mathematical and Theoretical 44 (2011) 475003. https://doi.org/10.1088/1751-8113/44/47/475003