Effect of annealing temperature on structural, morphological and optical properties of Cu/NiO thin films

Document Type : Full length research Paper


Department of Physics, Karaj Branch, Islamic Azad University, Karaj, Iran


In this study, Cu/NiO thin films were first deposited on glass and silicon substrates by the RF reactive magnetron sputtering and then the samples thermally annealed at 473, 673 and 873 K. For investigation of structural, morphological and optical properties of the films different analysis were employed. X-ray diffraction results indicate that all samples are amorphous. FTIR analysis shows a peak in the wavelength range 596.52 cm-1, which is related to Ni-O bonding. EDS map analysis also confirms the presence of nickel, oxygen and copper in the prepared layers. The results of AFM and FESEM analysis show that the morphology of the films is strongly influenced by the annealing temperature. The average roughness of films was varied between 0.19-0.50 nm and root mean square roughness was changed between 0.25-0.63 nm. Also, by variation of annealing temperature the optical band gap of the samples effectively influenced and optical band gap of the samples has changed between 3.14-3.50 eV.


Main Subjects

[1] A. Razeghizadeh, Thin Layer Physics, Payam Noor University, (2018) 50-65.
[2] M. Abila Marselin, N. Victor Jaya, Structural, optical and high pressure electrical resistivity studies of pure NiO and Cu-doped NiO nanoparticles, International Journal of Modern Physics B 30 (2016) 1650 -1656. https://doi.org/10.1142/S0217979216500569
[3] Y. Wang, J. Zhu, X. Yang, L. Lu, X. Wang, Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate, Thermochemical Acta 437 (2005) 106-109. https://doi.org/10.1016/j.tca.2005.06.027
[4] M. Arif, A. Sanger, M. Shkir, A.R.S. Singh, Katiyar, Influence of interparticle interaction on the structural, optical and magnetic properties of NiO nanoparticles, Physica B 552 (2018) 88-95.
[5] H. Ehssan Salah, S. Asrar Abdulmunem, K. Abdulhussain, Doping and thickness variation influence on the structural and sensing properties of NiO film prepared by RF magnetron sputtering, Journal of Materials Science: Materials in Electronics, 27 (2016)1270-1277.
[6] Y.A.K. Reddy, A.S. Reddy, P.S. Reddy, Substrate temperature dependent  properties of Cu doped NiO films deposited by DC reactive magnetron sputtering, Journal of Materials Science & Technology 29 (2013) 647-651.
[7] Y. Zhang, Thermal oxidation fabrication of NiO film for optoelectronic devices, Applied Surface Science 344 (2015) 33-37.
[8] I. Fasaki, A. Giannoudakos, M. Stamataki, M. Kompitsas, E. Gyorgy, I.N. Mihailescu, F. Robani-Kalantzopoulou, A. Lagoyannis, S. Harissoplos, Nickel oxide thin films synthesized by reactive pulsed laser depos- ition: characterization and application to hydrogen sensing, Applied Physics A 91 (2008) 487-492. http://dx.doi.org/10.1007/s00339-008-4435-0
 [9] D.Y. Jiang, J.M Qin, X. Wang, S. Gao, Q.C. Liang, J.X Zhao, Optical properties of NiO thin films fabricated by, electron beam evaporation, Vacuum 86 (2012) 1083-1089. https://doi.org/10.1016/j.vacuum.2011.10.003
[10] S. Pereira, A. Goncalves, N. Correia, J. Pinto, L. Pereira, R. Martins, E. Fortunato, Electrochromic behavior of NiO thin films deposited by e-beam evaporation at room temperature, Solar Energy Materials and Solar Cells 120 (2014) 109-115. https://doi.org/10.1016/j.solmat.2013.08.024
 [11] F. Hajakbari, Effect of annealing temperature on nano structural, morpho-logical and optical properties of nickel oxide films prepared by thermal oxidation of nickel films deposited by electron beam evaporation, Journal of Research on Manybody Systems 9 (2019) 69 - 82. https://dx.doi.org/10.22055/jrmbs.2019.14921
[12] I. Sta, M. Jlassi, M. Hajji, H. Ezzaouia, Structural, optical and electrical properties of undoped and Li-doped NiO thin films prepared by sol-gel spin coating method, Thin Solid Films 555 (2014) 131-137. https://doi.org/10.1016/j.tsf.2013.10.137
[13] T.M. Roffo, S. Nozaki, K. Uchida, Growth mechanism of single-crystalline NiO thin films grown by metal organic chemical vapor deposition, Journal of Crystal Growth 451 (2016) 57-64. https://doi.org/10.1016/j.jcrysgro.2016.06.047
[14] Ch. Ching Wu, Ch-F. Yang, Fabricate Heterojunction Diode by using the modified spray pyrolysis method to deposit Nickel -Lithium Oxide on Indium Tin Oxide substrate, ACS Applied Materials & Interfaces 5 (2013) 4996-5001. https://doi.org/10.1021/am400763m
[15] H. Ghorbani, M. Eshraghi, Investig- ation of chromium doping effect on the structural and magnetic properties of MnFe2-xCrxO4 ferrite nanoparticles, Journal of Research on Manybody Systems 6 (2017) 1-9. https://dx.doi.org/10.22055/jrmbs.2016.12437
[16] S. Sadat Parhizgar, F. morovati, Investigation of the layer deposition time effects on physical properties of thin layers N: ZnO, Journal of Research on Manybody Systems­9(2019)­33-39. https://dx.doi.org/10.22055/jrmbs.2019.14585
[17] Rufus O. Ijeh, Assumpta C. Nwanya, Agnes C. Nkele, Itani G.Madib, Z. Khumalo, A.K.H. Bashir, R.U. Osuji, M. Maaza, Fabian I. Ezema, Magnetic and optical properties of electrodeposited nanospherical copper doped nickel oxide thin films, Physica E: Low-dimensional Systems and Nanostructures 113 (2019) 233-239.
[18] R. Sharma, A.D. Acharya, S.B. Shirvastava, M.M. Patidar, M Gangrade, T. Shripathi, V. Ganesan, Studies on the structure optical and electrical properties of Zn-doped NiO thin films grown by spray pyrolysis, Optik 127 (2016) 4661-4668.
[19] A. Mohammed. Hameed, Omar A. Ali, Sarmed S.M. Al-Awadi, Optical properties of Ag-doped nickel oxide thin films prepared by Pulsed-Laser deposition technique, Optik 206 (2020) 164352. https://doi.org/10.1016/j.ijleo.2020.164352
[20] Y. Denny, K. Lee, C. Park, S.K Oh, H.J. Kang, D-S. Yang, S. Seo, Electronic, electrical and optical properties of undoped and Na-doped NiO thin films, Thin Solid Films 591 (2015)255-260. https://doi.org/10.1016/j.tsf.2015.04.043
[21] N. Zhou, Y. Cheng, B. Huang, X. Liao, Effect of nonmagnetic dopants (Ag, Cu or Mg) on ferromagnetic half-metallic properties of NiO, Physica B 19 (2019) 6-11. https://doi.org/10.1016/j.physb.2019.01.023
[22] S. Kerli, U. Alver, H. Yaykash, Invest- igation of the properties of In doped NiO films, Applied Surface Science 318 (2014) 164-167. https://doi.org/10.1016/j.apsusc.2014.02.141
[23] S. Layek, H.C. Verma, Room temp- erature ferromagnetism in Mn-doped NiO nanoparticles, Journal of Magnetism and Magnetic Materials 397 (2016) 73-78. https://doi.org/10.1016/j.jmmm.2015.08.082
[24] S. Kazuya, K. Sangcheol, K. Shuji, Z. Xinwei, Characteristics of Cu-doped amor-phous NiO thin films formed by RF magnetron sputtering, Japanese Journal of Applied Physics 55 (2016) 5-10. https://doi.org/10.7567/JJAP.55.06GJ10
[25] S.J. Mezher, M.O. Dawood, M.O. Abdulmunem, M.K Mejbel, Copper doped nickel oxide gas sensor, Vacuum 172 (2020) 109074-109093. https://doi.org/10.1016/j.vacuum.2019.109074
[26] K. Varun kumar, R. Hussani, G. Hegde, A.S Ethiraj, Effect of calcination temperature on Cu doped NiO nanoparticles prepared via wet-chemical method: Struc-tural, optical and morphological studies, Journal Materials Science in Semicon- ductor Processing 66 (2017) 149-156. https://doi.org/10.1016/j.mssp.2017.04.009
[27] F. Hajakbari, S. Rashvand, A. Hojabri, Effect of plasma oxidation parameters on physical properties of nanocrystalline nickel oxide thin films grown by two-step method: DC sputtering and plasma oxide-tion, Journal of Theoretical and Applied Physics 13 (2019) 365–373. https://dx.doi.org/10.1007/s40094-019-00350-8