بهینه سازی غیرخطی روی جوابهای سیاهچاله های ناتکین

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد لاهیجان، لاهیجان، ایران

2 گروه ریاضی، دانشکده علوم ریاضی، دانشگاه آزاد اسلامی واحد لاهیجان، لاهیجان، ایران

3 پژوهش سرای دانش آموزی ابن شهر آشوب، اداره آموزش و پرورش، ناحیه 1، ساری، ایران

چکیده

این مقاله، با بهره گیری از رهیافت بهینه سازی غیر خطی، به جستجوی جوابهای بهینه برای حالتهای مختلف از سیاهچاله های ناتکین در فضا-زمان ناجابجایی که شامل قیود غیرخطی از نوع نامساوی هستند، پرداخته است. به منظور حل مسألة بهینه سازی غیرخطی منتج از مدل فیزیکی، از روش برنامه ریزی درجه دوم متوالی بهره گرفته می شود. در چارچوب مذکور، یک جواب بیشینه بهینه به ازای مقادیری ویژه از پارامترهای آزاد مسأله برای تابع عدم قطعیت لاگرانژی بدست می آید؛ بطوریکه حالت بهینه تا حدودی مستقل از اثرات کوانتومی بوده و جوابی متناظر با حالت کلاسیک در فواصلی بسیار کوتاه حاصل گردیده است. به عبارت دیگر، مرحله نهایی تبخیر سیاهچاله ها تنها به خاصیت ذاتی از خمینه1 در هندسه ناجابجایی به صورت جزئی وابسته است و مستقل از بار مغناطیسی می باشد؛ با این وجود، اثرات ناجابجایی هرچند بسیار اندک به تنهایی کفایت می کنند تا باعث ایجاد پسماندهایی در پایان عمر سیاهچاله ها گردند و از تکین شدن جواب کلاسیک در مقیاس ریز فضا-زمان جلوگیری نمایند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nonlinear optimization on regular black hole solutions

نویسندگان [English]

  • Sayed Hamid Mehdipour 1
  • Armin Ghane Kanafi 2
  • Seyed Mohsen Peyghoon 3
1 Department of Physics, College of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
2 Faculty member of Department of Mathematics, College of Math Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
3 Ibne Shahr Ashoob-e Saravi Student Research Center, Administration of Education, District 1, Sari, Iran
چکیده [English]

Using a nonlinear optimization approach, this paper seeks to find optimal solutions for different states of nonsingular black holes in noncommutative space-time that include nonlinear constraints of the inequality type. In order to solve the nonlinear optimization problem resulting from the physical model, the successive quadratic programming method is used. In the mentioned framework, an optimal maximum solution of the Lagrangian uncertainty function is obtained for the particular values of free parameters of the problem, so that the optimal state is somewhat independent of quantum effects and the solution corresponding to the classical state is achieved in very short distances. In other words, the final stage of evaporation of black holes depends only in part on the inherent property of manifold in noncommutative geometry and is independent of the magnetic charge. However, the noncommutative effects, albeit trivial, are individually sufficient to generate remnants at the end of black holes' lifetime and prevent the classical solution from being singular on a microscopic scale of space-time.

کلیدواژه‌ها [English]

  • Nonlinear electrodynamics
  • Hayward black hole
  • Noncommutative effects
  • Hawking radiation
  • Uncertainty principle
  • Nonlinear optimization method
  • Successive quadratic programming
[1] W.P. Fox, Nonlinear Optimization: Models and Applications, CRC Press, Taylor & Francis Group, LLC, (2021). https://www.routledge.com/Nonlinear-Optimization-Models-and-Applications/Fox/p/book/9780367444150
[2] J.E. Dennis. Jr, R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Society for Industrial Mathematics, Philadelphia, PA, (1996). https://www.amazon.com/Numerical-Unconstrained-Optimization-Nonlinear-Mathematics/dp/0898713641
[3] W.C. Davidon, Optimally conditioned optimization algorithms without line searches, Mathematical Programming 9 (1975) 1-30. https://doi.org/10.1007/BF01681328
[4] J.E. Dennis. Jr, J.J. Moré, Quasi-Newton methods, motivation and theory, SIAM review 19 (1977) 46-89. https://doi.org/10.1137/1019005
[5] J.S. Arora, Computational design optimization: a review and future directions, Structural Safety 7 (1990) 131-148. https://doi.org/10.1016/0167-4730(90)90063-U
[6] J.S. Arora, A.I. Chahande, J.K. Paeng, Multiplier methods for engineering optimization, International journal for numerical methods in engineering 32 (1991) 1485-1525. https://doi.org/10.1002/nme.1620320706
[7] J.S. Arora, Introduction to optimum design (4th Edition), Academic Press, Elsevier, (2016). https://www.elsevier.com/books/introduction-to-optimum-design/arora/978-0-12-800806-5
[8] A. Ajagekar, T. Humble, F. You, Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems, Computers & Chemical Engineering 132 (2020) 106630. https://doi.org/10.1016/j.compchemeng.2019.106630
[9] M.J. Mahmoodabadi, F. Sadeghi Googhari, Numerical solution of time-dependent Schrodinger equation by combination of the finite difference method and particle swarm optimization, Journal of Research on Many-body Systems 11 (2021) 114-127. https://dx.doi.org/10.22055/jrmbs.2021.16786
[10] H. Li, L. Gao, H. Li, X. Li, H. Tong, Full-scale topology optimization for fiber-reinforced structures with continuous fiber paths, Computer Methods in Applied Mechanics and Engineering 377 (2021) 113668. https://doi.org/10.1016/j.cma.2021.113668
[11] F. Karimi-Pour, V. Puig, C. Ocampo-Martinez, Economic model predictive control of nonlinear systems using a linear parameter varying approach, International Journal Robust Nonlinear Control (2021) 1-21. https://doi.org/10.1002/rnc.5477
[12] A. Pourrajabian, M. Dehghan, S. Rahgozar, Genetic algorithms for the design and optimization of horizontal axis wind turbine (HAWT) blades: A continuous approach or a binary one?, Sustainable Energy Technologies and Assessments 44 (2021) 101022. https://doi.org/10.1016/j.seta.2021.101022
[13] S.W. Hawking, G. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, (1973). https://doi.org/10.1017/CBO9780511524646
[14] S. Ansoldi, Spherical black holes with regular center: a review of existing models including a recent realization with Gaussian sources, Proceedings of BH2, Dynamics and Thermodynamics of Blackholes and Naked Singularities, Milano, Italy, (2007). https://arxiv.org/pdf/0802.0330
[15] P. Nicolini, Noncommutative black holes, the final appeal to quantum gravity: a review, International Journal of Modern Physics A 24 (2009) 1229-1308. https://doi.org/10.1142/S0217751X09043353
[16] E. Ayon-Beato, A. Garcia, Regular black hole in general relativity coupled to nonlinear electrodynamics, Physical review letters 80 (1998) 5056-5059. https://doi.org/10.1103/PhysRevLett.80.5056
[17] J.M. Bardeen, Non-singular general-relativistic gravitational collapse, Proceedings of the International Conference GR5, Tbilisi, Georgia, (1968). http://scholar.google.com/scholar_lookup?&title=Proceedings%20of%20International%20Conference%20GR5&publication_year=1968&author=Bardeen%2CJ.%20M.
[18] S.A. Hayward, Formation and evaporation of nonsingular black holes, Physical review letters 96 (2006) 031103. https://doi.org/10.1103/PhysRevLett.96.031103
[19] Z.Y. Fan, X. Wang, Construction of regular black holes in general relativity, Physical Review D 94 (2016) 124027. https://doi.org/10.1103/PhysRevD.94.124027
[20] K.A. Bronnikov, Nonlinear electrodynamics, regular black holes and wormholes, International Journal of Modern Physics D 27 (2018) 1841005. https://doi.org/10.1142/S0218271818410055
[21] S.N. Sajadi, N. Riaz, Correction to: Nonlinear electrodynamics and regular black holes, General Relativity and Gravitation 52 (2020) 18. https://doi.org/10.1007/s10714-020-02668-0
[22] S.H. Mehdipour, Teleparallel gravity coupled to matter content from nonlinear electrodynamics with dyonic configuration, The European Physical Journal Plus 136 (2021) 351. https://doi.org/10.1140/epjp/s13360-021-01345-8
[23] H. Hinrichsen, A. Kempf, Maximal localization in the presence of minimal uncertainties in positions and in momenta, Journal of Mathematical Physics 37 (1996) 2121-2137. https://doi.org/10.1063/1.531501
[24] A. Tawfik, A. Diab, Generalized uncertainty principle: Approaches and applications, International Journal of Modern Physics D 23 (2014) 1430025. https://doi.org/10.1142/S0218271814300250
[25] Y.S. Myung, Y.W. Kim, Y.J. Park, Black hole thermodynamics with generalized uncertainty principle, Physics Letters B 645 (2007) 393-397. https://doi.org/10.1016/j.physletb.2006.12.062
[26] R.J. Adler, P. Chen, D.I. Santiago, The generalized uncertainty principle and black hole remnants, General Relativity and Gravitation 33 (2001) 2101-2108. https://doi.org/10.1023/A:1015281430411
[27] H.C. Ohanian, R. Ruffini, Gravitation and spacetime, Cambridge University Press, Cambridge, (2013). https://doi.org/10.1017/CBO9781139003391
[28] M. Maggiore, A generalized uncertainty principle in quantum gravity, Physics Letters B 304 (1993) 65-69. https://doi.org/10.1016/0370-2693(93)91401-8
[29] M. Sprenger, P. Nicolini, M. Bleicher, Physics on the smallest scales: an introduction to minimal length phenomenology, European Journal of Physics 33 (2012) 853. https://doi.org/10.1088/0143-0807/33/4/853
[30] A. Smailagic, E. Spallucci, Feynman path integral on the non-commutative plane, Journal of Physics A: Mathematical and General 36 (2003) L467. https://doi.org/10.1088/0305-4470/36/33/101
[31] S.H. Mehdipour, M.H. Ahmadi, A comparison of remnants in noncommutative Bardeen black holes, Astrophysics and Space Science 361 (2016) 314. https://doi.org/10.1007/s10509-016-2904-z
[32] S.H. Mehdipour, M.H. Ahmadi, Black hole remnants in Hayward solutions and noncommutative effects, Nuclear Physics B 926 (2018) 49-69. https://doi.org/10.1016/j.nuclphysb.2017.09.021
[33] S.H. Mehdipour, Emergent GUP from Modified Hawking Radiation in Einstein-NED Theory, Canadian Journal of Physics 98 (2020) 801-809. https://doi.org/10.1139/cjp-2019-0416
[34] S. Nayak, Fundamentals of Optimization Techniques with Algorithms, Academic Press, Elsevier Inc., (2020). https://www.elsevier.com/books/fundamentals-of-optimization-techniques-with-algorithms/nayak/978-0-12-821126-7
[35] M.J. Kochenderfer, T.A. Wheeler, Algorithms for optimization, The MIT Press, Cambridge, MA, (2019). https://mitpress.mit.edu/books/algorithms-optimization
[36] J. Nocedal, S.J. Wright, Numerical Optimization, Springer-Verlag, New York, NY, (1999). https://doi.org/10.1007/b9887
[37] S.H. Mehdipour, Entropic force approach to noncommutative Schwarzschild black holes signals a failure of current physical ideas, The European Physical Journal Plus 127 (2012) 80. https://doi.org/10.1140/epjp/i2012-12080-4
[38] O.L. Mangasarian, S. Fromovitz, The Fritz John necessary optimality conditions in the presence of equality and inequality constraints, Journal of Mathematical Analysis and applications 17 (1967) 37-47. https://doi.org/10.1016/0022-247X(67)90163-1
[39] M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications 80 (1981) 545-550. https://doi.org/10.1016/0022-247X(81)90123-2
[40] M. Fukushima, A successive quadratic programming algorithm with global and superlinear convergence properties, Mathematical Programming 35 (1986) 253-264. https://doi.org/10.1007/BF01580879
[41] H. Pirnay, R. López-Negrete, L.T. Biegler, Optimal sensitivity based on IPOPT, Mathematical Programming Computation 4 (2012) 307-331. https://doi.org/10.1007/s12532-012-0043-2
[42] A. Ghane-Kanafi, E. Khorram, A new scalarization method for finding the efficient frontier in non-convex multi-objective problems, Applied Mathematical Modelling 39 (2015) 7483-7498. https://doi.org/10.1016/j.apm.2015.03.022
[43] A. Ghane-Kanafi, S. Kordrostami, A New Approach for Solving Nonlinear Equations by Using of Integer Nonlinear Programming, Applied Mathematics 7 (2016) 473-481. http://dx.doi.org/10.4236/am.2016.7604