[6] J.S. Arora, A.I. Chahande, J.K. Paeng, Multiplier methods for engineering optimization, International journal for numerical methods in engineering 32 (1991) 1485-1525. https://doi.org/10.1002/nme.1620320706
[8] A. Ajagekar, T. Humble, F. You, Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems, Computers & Chemical Engineering 132 (2020) 106630. https://doi.org/10.1016/j.compchemeng.2019.106630
[9] M.J. Mahmoodabadi, F. Sadeghi Googhari, Numerical solution of time-dependent Schrodinger equation by combination of the finite difference method and particle swarm optimization, Journal of Research on Many-body Systems 11 (2021) 114-127. https://dx.doi.org/10.22055/jrmbs.2021.16786
[10] H. Li, L. Gao, H. Li, X. Li, H. Tong, Full-scale topology optimization for fiber-reinforced structures with continuous fiber paths, Computer Methods in Applied Mechanics and Engineering 377 (2021) 113668. https://doi.org/10.1016/j.cma.2021.113668
[11] F. Karimi-Pour, V. Puig, C. Ocampo-Martinez, Economic model predictive control of nonlinear systems using a linear parameter varying approach, International Journal Robust Nonlinear Control (2021) 1-21. https://doi.org/10.1002/rnc.5477
[12] A. Pourrajabian, M. Dehghan, S. Rahgozar, Genetic algorithms for the design and optimization of horizontal axis wind turbine (HAWT) blades: A continuous approach or a binary one?, Sustainable Energy Technologies and Assessments 44 (2021) 101022. https://doi.org/10.1016/j.seta.2021.101022
[14] S. Ansoldi, Spherical black holes with regular center: a review of existing models including a recent realization with Gaussian sources, Proceedings of BH2, Dynamics and Thermodynamics of Blackholes and Naked Singularities, Milano, Italy, (2007). https://arxiv.org/pdf/0802.0330
[16] E. Ayon-Beato, A. Garcia, Regular black hole in general relativity coupled to nonlinear electrodynamics, Physical review letters 80 (1998) 5056-5059. https://doi.org/10.1103/PhysRevLett.80.5056
[18] S.A. Hayward, Formation and evaporation of nonsingular black holes, Physical review letters 96 (2006) 031103. https://doi.org/10.1103/PhysRevLett.96.031103
[19] Z.Y. Fan, X. Wang, Construction of regular black holes in general relativity, Physical Review D 94 (2016) 124027. https://doi.org/10.1103/PhysRevD.94.124027
[23] H. Hinrichsen, A. Kempf, Maximal localization in the presence of minimal uncertainties in positions and in momenta, Journal of Mathematical Physics 37 (1996) 2121-2137. https://doi.org/10.1063/1.531501
[26] R.J. Adler, P. Chen, D.I. Santiago, The generalized uncertainty principle and black hole remnants, General Relativity and Gravitation 33 (2001) 2101-2108. https://doi.org/10.1023/A:1015281430411
[29] M. Sprenger, P. Nicolini, M. Bleicher, Physics on the smallest scales: an introduction to minimal length phenomenology, European Journal of Physics 33 (2012) 853. https://doi.org/10.1088/0143-0807/33/4/853
[34] S. Nayak, Fundamentals of Optimization Techniques with Algorithms, Academic Press, Elsevier Inc., (2020). https://www.elsevier.com/books/fundamentals-of-optimization-techniques-with-algorithms/nayak/978-0-12-821126-7
[35] M.J. Kochenderfer, T.A. Wheeler, Algorithms for optimization, The MIT Press, Cambridge, MA, (2019). https://mitpress.mit.edu/books/algorithms-optimization
[36] J. Nocedal, S.J. Wright, Numerical Optimization, Springer-Verlag, New York, NY, (1999). https://doi.org/10.1007/b9887
[37] S.H. Mehdipour, Entropic force approach to noncommutative Schwarzschild black holes signals a failure of current physical ideas, The European Physical Journal Plus 127 (2012) 80. https://doi.org/10.1140/epjp/i2012-12080-4
[38] O.L. Mangasarian, S. Fromovitz, The Fritz John necessary optimality conditions in the presence of equality and inequality constraints, Journal of Mathematical Analysis and applications 17 (1967) 37-47. https://doi.org/10.1016/0022-247X(67)90163-1
[40] M. Fukushima, A successive quadratic programming algorithm with global and superlinear convergence properties, Mathematical Programming 35 (1986) 253-264. https://doi.org/10.1007/BF01580879
[42] A. Ghane-Kanafi, E. Khorram, A new scalarization method for finding the efficient frontier in non-convex multi-objective problems, Applied Mathematical Modelling 39 (2015) 7483-7498. https://doi.org/10.1016/j.apm.2015.03.022
[43] A. Ghane-Kanafi, S. Kordrostami, A New Approach for Solving Nonlinear Equations by Using of Integer Nonlinear Programming, Applied Mathematics 7 (2016) 473-481. http://dx.doi.org/10.4236/am.2016.7604