انرژی تاریک هولوگرافیک سالیس برهم کنشی: توصیف جهان شتابدار

نوع مقاله : مقاله پژوهشی کامل

نویسنده

گروه فیزیک، دانشگاه صنعتی سیرجان، سیرجان، ایران

چکیده

مدل انرژی تاریک هولوگرافیک، با افق ذره به عنوان طول قطع مادون قرمز نمی‌تواند منجر به جهان شتابدار شود و این با مشاهدات کیهان‌شناسی اخیر مغایرت دارد. این مشکل با جایگزینی افق رویداد آینده به جای افق ذره برطرف می‌گردد. در این مقاله می‌بینیم که برای مدل انرژی تاریک هولوگرافیک سالیس با افق رویداد آینده به عنوان طول قطع مادون قرمز، کاملاً ممکن است که جهان شتابدار را باز تولید کنیم و این یکی از خصوصیات مهم مدل انرژی تاریک هولوگرافیک سالیس در قیاس با مدل انرژی تاریک هولوگرافیک معمولی می‌باشد. سپس به مطالعه نظریه اختلال کیهانی برای این مدل انرژی تاریک پرداخته و مشاهده می‌کنیم که این مدل تحت اختلال پایدار می‌باشد. مدل انرژی تاریک هولوگرافیک سالیس در حضور برهم‌کنش بین ماده تاریک و انرژی تاریک مشکل انطباق را حل می‌نماید، لذا ما مدل انرژی تاریک هولوگرافیک سالیس برهم‌کنشی را در نظر می‌گیریم و تحول پارامترهای کیهان‌شناسی را تحقیق می‌کنیم. نتایج به دست آمده نشان می‌دهد که پارامتر بدون بعد چگالی انرژی تاریک هولوگرافیک سالیس دینامیک می‌باشد. می‌توان دریافت که این مدل، می‌تواند انبساط شتابدار تندشونده عالم را توجیه کرده و نشان دهد که عالم از یک دوره انبساط شتابدار با شتاب کندشونده وارد دوره‌ای با شتاب تندشونده می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Interacting Tisallis holographic dark energy: the explanation of the accelerated universe

نویسنده [English]

  • Soudabe Nasirimoghadam
1Department of Physics, Sirjan University of Technology, P.O. Box 7813733385, Sirjan, Iran
چکیده [English]

Holographic dark energy model with the particle horizon, , as the infrared (IR) cutoff cannot explain an accelerated universe and it is in contradiction with cosmological data. However, this problem will be solved if the particle horizon is replaced by the future event horizon. In this paper, we show that the Tsallis holographic dark energy model with the future event horizon as the IR cutoff can reproduce the accelerated universe and it is one of the main features of the Tsallis holographic dark energy model compared to the usual holographic dark energy model. We study the cosmological perturbation theory for this dark energy model and find it to be stable against perturbation. Since the Tsallis holographic dark energy with assuming interaction between dark energy and dark matter can solve the coincidence problem, we consider the interacting Tsallis dark energy model and investigate the evolution of cosmological parameters. We also find out that the considered model can describe the accelerated expansion of the universe and show that the universe transit from the decelerated to the accelerated phase which is consistent with the cosmological observations.

کلیدواژه‌ها [English]

  • Tsallis holographic dark energy
  • Cosmological perturbation theory
  • Quantum gravity
  1. [1] S. Nojiri, S.D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, Physics Report 505 (2011) 59. https://doi.org/10.1016/j.physrep.2011.04.001

    [2] S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Properties of singularities in the (phantom) dark energy universe, Physics Report 692 (2017) 1. https://doi.org/10.1016/j.physrep.2017.06.001

    [3] T. Padmanabhan, Cosmological constant—the weight of the vacuum, Physics Report 380 (2003) 235. https://doi.org/10.1016/S0370-1573(03)00 120-0

    [4] A.G. Riess, et al., Milky way cepheid standard for measuring cosmic distances and applications to Gaia DR2: implications for the Hubble constant, The Astrophysical Journal 861 (2018) 126. https://doi.org/10.3847/1538-4357/aaadb7

    [5] W.L. Freedman, Astronomy at a crossroads, Nature Astronomy 1 (2017) 0121. https://doi.org/10.1038/s41550-017-0121

    [6] G.’t Hooft, Dimensional reduction in quantum gravity, (1993), arXiv:gr-qc/9310026.

    1. Susskind, The world as a hologram, Journal of Mathematical Physics 36 (1995) 6377.  https://doi.org/10.1063/1.531249

    [7] A.G. Cohen, D.B. Kaplan, A.E. Nelson, Effective field theory, black holes, and the cosmological constant, Physical Review Letters 82 (1999) 4971. https://doi.org/10.1103/PhysRevLett.82.4971

    [8] M. Li, A Model of Holographic dark energy, Physics Letters B 603 (2004) 1. https://doi.org/10.1016/j.physletb.2004.10.014

    [9] S. Wang, Y. Wang, M. Li, Holographic dark energy, Physics Report 696 (2017) 1. https://doi.org/10.1016/j.physrep.2017.06.003

    [10] A. Sheykhi, Holographic scalar field models of dark energy, Physical Review D 84 (2011) 107302. https://doi.org/10.1103/PhysRevD.84.107302

    [11] S.D.H. Hsu, Entropy bounds and dark energy, Physics Letters B 594 (2004) 13. https://doi.org/10.1016/j.physletb.2004.05.020

    [12] B. Guberina, R. Horvat, H. Nikolic, Non-saturated holographic dark energy, Journal of Cosmology and Astroparticle Physics 01 (2007) 012. https://doi.org/10.1088/1475-7516/2007/01/ 012

    [13] B. Wang, E. Abdalla, F. Atrio-Barandela, D. Pavon, Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures, Report Progress in Physics 79 (2016) 096901. https://doi.org/10.1088/0034-4885/79/9/096 901

    [14] T.S. Biró, V.G. Czinner, A q-parameter bound for particle spectra based on black hole thermodynamics with Rényi entropy, Physics Letters B 726 861 (2013). https://doi.org/10.1016/j.physletb.2013.09.032

    [15] H. Touchette, When is a quantity additive, and when is it extensive?, Physica A 305 (2002) 84. https://doi.org/10.1016/S0378-4371(01)006 44-6

    [16] H. Moradpour, A. Sheykhi, C. Corda, I. G. Salako, Implications of the generalized entropy formalisms on the Newtonian gravity and dynamics, Physics letters B 783 (2018) 82. https://doi.org/10.1016/j.physletb.2018.06.040

    [17] V.G. Czinner, H. Iguchi, Thermodynamics, stability and Hawking page-transition For Kerr black holes from Rényi statistics, The European Physical Journal C 77 (2017) 892. https://doi.org/10.1140/epjc/s10052-017-5453 -x

    [18] A. Majhi, Non-extensive statistical mechanics and black hole entropy from quantum geometry, Physics Letters B 775 (2017) 32. https://doi.org/10.1016/j.physletb.2017.10.043

    [19] R.C. Nunes, et al., Probing the cosmological viability of non-gaussian statistics, Journal of Cosmology and Astroparticle Physics 08 (2016) 051. https://doi.org/10.1088/1475-7516/2016/08/ 051

    [20] A. Sayahian Jahromi, et al., Generalized entropy formalism and a new holographic dark energy model, Physics Letters B 780 (2018) 21. https://doi.org/10.1016/j.physletb.2018.02.052

    [21] C. Tsallis, The nonadditive entropy Sq and its applications in physics and elsewhere: some remarks, Entropy 13 (2011) 1765.         https://doi.org/10.3390/e13101765

    [22] A. Rényi, Probability Theory (North-Holland, Amsterdam, 1970).

    [23] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, Journal of Statistical Physics 52 (1988) 479. https://doi.org/10.1007/BF01016429

    [24] H. Moradpour, et al., Thermodynamic approach to holographic dark energy and Rényi entropy, The European Physical Journal C 78 (2018) 829. https://doi.org/10.1140/epjc/s10052-018-6309-8

    [25] C. Tsallis, L.J.L. Crito, Black hole thermodynamical entropy, The European Physical Journal C 73 (2013) 2487. https://doi.org/10.1140/epjc/s10052-013-2487-6

    [26] M. Tavayef, et al., Tsallis Holographic Dark Energy, Physics Letters B 781 (2018) 195. https://doi.org/10.1016/j.physletb.2018.04.001

    [27] E. Sadri, Observational constrains on interacting Tsallis holographic dark energy model, The European Physical Journal C 79 (2019) 762. https://doi.org/10.1140/epjc/s10052-019-72 63-9

    [28] M. Abdollahi Zadeh, A. Sheykhi, H. Moradpour, Tsallis agegraphic dark energy model, Modern Physics letters A 34 (2019) 1950086. https://doi.org/10.1142/S021773231950086X

    [29] S. Ghaffari, et al., Tsallis dark energy in the Brans-Dicke cosmology, The European Physical Journal C 78 (2018) 706. https://doi.org/10.1140/epjc/s10052-018-6198-x

    [30] E.M. Barboza Jr, R.C. Nunes, E.M.C. Abreu, J.A. Neto, Dark energy models through nonextensive Tsallis’ statistics, Physica A 436 (2015) 301. https://doi.org/10.1016/j.physa.2015.05.002

    [31] E.M.C. Abreu, J. Ananias Neto, A.C.R. Mendes, A. Bonilla, Tsallis and Kaniadakis statistics from a point of view of the holographic equipartition low, Europhysics Letters 121 (2018) 45002. https://doi.org/10.1209/0295-5075/121/450 02

    [32] E.M.C. Abreu, J. Ananias Neto, A.C.R. Mendes, W. Oliveira, New bounds for Tsallis parameter in a noncommutative phase-space entropic gravity and nonextensive Friedmann equations, Physica A 392 (2013) 5154. https://doi.org/10.1016/j.physa.2013.06.047

    [33] E.N. Saridakis, K. Bamba, R. Myrzakulov, F.K. Anagnostopoulos, Holographic dark energy through Tsallis entropy, Journal of Cosmology and Astroparticle Physics 1812 (2018) 012. https://doi.org/10.1088/1475-7516/2018/12/ 012

    [34] M. Abdollahi Zadeh, A. Sheykhi, H. Moradpour, K. Bamba, Notes on Tsallis holographic dark energy, Eouropean Physical Journal C 78 (2018) 940. https://doi.org/10.1140/epjc/s10052-018-6427-3

    [35] L.R. Abramo, R.C. Batista, L. Liberato, R. Rosenfeld, Structure formation in the presence of dark energy perturbations, Journal of Cosmology and Astroparticle Physics 11 (2007) 012. https://doi.org/10.1088/1475-7516/2007/11 /012

    [36] L.R. Abramo, R.C. Batista, L. Liberato, R. Rosenfeld, Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenarios, Physical Review D 79 (2009) 023516. https://doi.org/10.1103/PhysRevD.79.023516

    [37] A. Mehrabi, S. Basilakos, M. Malekjani, Z. Davari, Growth of matter perturbations in clustered holographic dark energy cosmologies, Physical Review D 92 (2015) 123513. https://doi.org/10.1103/PhysRevD.92.123513

    [38] M. Rezaei, et al., Constraints to dark energy using PADE parameterizations, The AstroPhysical Journal 843 (2017) 65. https://doi.org/10.3847/1538-4357/aa7898

    [39] M. Li, C. Lin, Y. Wang, Some issues concerning holographic dark energy, Journal of Cosmology and Astroparticle Physics 05 (2008) 023.

    [40] W. Zimdahl, D. Pavón, L.P. Chimento, Interacting quintessence, Physics Letters B 521 (2001) 133. https://doi.org/10.1016/S0370-2693(01)011 74-1

    [41] B. Wang, et al., Interacting dark energy and dark matter: observational constraints from cosmological parameters, Nuclear Physics B 778 (2007) 69. https://doi.org/10.1016/j.nuclphysb.2007.04.037

    [42] W. Zimdahl, Interacting dark energy and cosmological equations of state, International Journal of Modern Physics D 14 (2005) 2319. https://doi.org/10.1142/S0218271805007784

    [43] A. Nishizawa, A. Taruya, S. Saito, Tracing the red shift evolution of Hubble parameter with gravitational-wave standard sirens, Physical Review D 83 (2011) 084045. https://doi.org/10.1103/PhysRevD.83.084045

    [44] M. Moresco, et al., 6% of the Hubble parameter at : direct evidence of the epoch of cosmic re-acceleration, Journal of Cosmology and Astroparticle Physics 05 (2016) 014. https://doi.org/10.1088/1475-7516/2016/05/ 014

    [45] R.A. Daly, et al., Improved constraints on the acceleration history of the Universe and the properties of the dark energy, The Astrophysical Journal 677 (2008) 1. https://doi.org/10.1086/528837

    [46] T. Abbott, et al., The Dark Energy Survey, arXiv:astro-ph/ 0510346.

    [47] Sh. Ghaffari, et al., Tsallis holographic dark energy in the Brans-Dicke cosmology, Eouropean Physical Journal C 78 (2018) 706.       https://doi.org/10.1093/mnras/sty903

    [48] A. Al. Mamnon, Study of Tsallis holographic dark energy model in the framework of fractal cosmology, Modern Physics Letters A 35 (2020) 2050251. https://doi.org/10.1142/S021773232050251X