Document Type : Full length research Paper
Author
1Department of Physics, Sirjan University of Technology, P.O. Box 7813733385, Sirjan, Iran
Abstract
Keywords
[1] S. Nojiri, S.D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, Physics Report 505 (2011) 59. https://doi.org/10.1016/j.physrep.2011.04.001
[2] S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Properties of singularities in the (phantom) dark energy universe, Physics Report 692 (2017) 1. https://doi.org/10.1016/j.physrep.2017.06.001
[3] T. Padmanabhan, Cosmological constant—the weight of the vacuum, Physics Report 380 (2003) 235. https://doi.org/10.1016/S0370-1573(03)00 120-0
[4] A.G. Riess, et al., Milky way cepheid standard for measuring cosmic distances and applications to Gaia DR2: implications for the Hubble constant, The Astrophysical Journal 861 (2018) 126. https://doi.org/10.3847/1538-4357/aaadb7
[5] W.L. Freedman, Astronomy at a crossroads, Nature Astronomy 1 (2017) 0121. https://doi.org/10.1038/s41550-017-0121
[6] G.’t Hooft, Dimensional reduction in quantum gravity, (1993), arXiv:gr-qc/9310026.
[7] A.G. Cohen, D.B. Kaplan, A.E. Nelson, Effective field theory, black holes, and the cosmological constant, Physical Review Letters 82 (1999) 4971. https://doi.org/10.1103/PhysRevLett.82.4971
[8] M. Li, A Model of Holographic dark energy, Physics Letters B 603 (2004) 1. https://doi.org/10.1016/j.physletb.2004.10.014
[9] S. Wang, Y. Wang, M. Li, Holographic dark energy, Physics Report 696 (2017) 1. https://doi.org/10.1016/j.physrep.2017.06.003
[10] A. Sheykhi, Holographic scalar field models of dark energy, Physical Review D 84 (2011) 107302. https://doi.org/10.1103/PhysRevD.84.107302
[11] S.D.H. Hsu, Entropy bounds and dark energy, Physics Letters B 594 (2004) 13. https://doi.org/10.1016/j.physletb.2004.05.020
[12] B. Guberina, R. Horvat, H. Nikolic, Non-saturated holographic dark energy, Journal of Cosmology and Astroparticle Physics 01 (2007) 012. https://doi.org/10.1088/1475-7516/2007/01/ 012
[13] B. Wang, E. Abdalla, F. Atrio-Barandela, D. Pavon, Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures, Report Progress in Physics 79 (2016) 096901. https://doi.org/10.1088/0034-4885/79/9/096 901
[14] T.S. Biró, V.G. Czinner, A q-parameter bound for particle spectra based on black hole thermodynamics with Rényi entropy, Physics Letters B 726 861 (2013). https://doi.org/10.1016/j.physletb.2013.09.032
[15] H. Touchette, When is a quantity additive, and when is it extensive?, Physica A 305 (2002) 84. https://doi.org/10.1016/S0378-4371(01)006 44-6
[16] H. Moradpour, A. Sheykhi, C. Corda, I. G. Salako, Implications of the generalized entropy formalisms on the Newtonian gravity and dynamics, Physics letters B 783 (2018) 82. https://doi.org/10.1016/j.physletb.2018.06.040
[17] V.G. Czinner, H. Iguchi, Thermodynamics, stability and Hawking page-transition For Kerr black holes from Rényi statistics, The European Physical Journal C 77 (2017) 892. https://doi.org/10.1140/epjc/s10052-017-5453 -x
[18] A. Majhi, Non-extensive statistical mechanics and black hole entropy from quantum geometry, Physics Letters B 775 (2017) 32. https://doi.org/10.1016/j.physletb.2017.10.043
[19] R.C. Nunes, et al., Probing the cosmological viability of non-gaussian statistics, Journal of Cosmology and Astroparticle Physics 08 (2016) 051. https://doi.org/10.1088/1475-7516/2016/08/ 051
[20] A. Sayahian Jahromi, et al., Generalized entropy formalism and a new holographic dark energy model, Physics Letters B 780 (2018) 21. https://doi.org/10.1016/j.physletb.2018.02.052
[21] C. Tsallis, The nonadditive entropy Sq and its applications in physics and elsewhere: some remarks, Entropy 13 (2011) 1765. https://doi.org/10.3390/e13101765
[22] A. Rényi, Probability Theory (North-Holland, Amsterdam, 1970).
[23] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, Journal of Statistical Physics 52 (1988) 479. https://doi.org/10.1007/BF01016429
[24] H. Moradpour, et al., Thermodynamic approach to holographic dark energy and Rényi entropy, The European Physical Journal C 78 (2018) 829. https://doi.org/10.1140/epjc/s10052-018-6309-8
[25] C. Tsallis, L.J.L. Crito, Black hole thermodynamical entropy, The European Physical Journal C 73 (2013) 2487. https://doi.org/10.1140/epjc/s10052-013-2487-6
[26] M. Tavayef, et al., Tsallis Holographic Dark Energy, Physics Letters B 781 (2018) 195. https://doi.org/10.1016/j.physletb.2018.04.001
[27] E. Sadri, Observational constrains on interacting Tsallis holographic dark energy model, The European Physical Journal C 79 (2019) 762. https://doi.org/10.1140/epjc/s10052-019-72 63-9
[28] M. Abdollahi Zadeh, A. Sheykhi, H. Moradpour, Tsallis agegraphic dark energy model, Modern Physics letters A 34 (2019) 1950086. https://doi.org/10.1142/S021773231950086X
[29] S. Ghaffari, et al., Tsallis dark energy in the Brans-Dicke cosmology, The European Physical Journal C 78 (2018) 706. https://doi.org/10.1140/epjc/s10052-018-6198-x
[30] E.M. Barboza Jr, R.C. Nunes, E.M.C. Abreu, J.A. Neto, Dark energy models through nonextensive Tsallis’ statistics, Physica A 436 (2015) 301. https://doi.org/10.1016/j.physa.2015.05.002
[31] E.M.C. Abreu, J. Ananias Neto, A.C.R. Mendes, A. Bonilla, Tsallis and Kaniadakis statistics from a point of view of the holographic equipartition low, Europhysics Letters 121 (2018) 45002. https://doi.org/10.1209/0295-5075/121/450 02
[32] E.M.C. Abreu, J. Ananias Neto, A.C.R. Mendes, W. Oliveira, New bounds for Tsallis parameter in a noncommutative phase-space entropic gravity and nonextensive Friedmann equations, Physica A 392 (2013) 5154. https://doi.org/10.1016/j.physa.2013.06.047
[33] E.N. Saridakis, K. Bamba, R. Myrzakulov, F.K. Anagnostopoulos, Holographic dark energy through Tsallis entropy, Journal of Cosmology and Astroparticle Physics 1812 (2018) 012. https://doi.org/10.1088/1475-7516/2018/12/ 012
[34] M. Abdollahi Zadeh, A. Sheykhi, H. Moradpour, K. Bamba, Notes on Tsallis holographic dark energy, Eouropean Physical Journal C 78 (2018) 940. https://doi.org/10.1140/epjc/s10052-018-6427-3
[35] L.R. Abramo, R.C. Batista, L. Liberato, R. Rosenfeld, Structure formation in the presence of dark energy perturbations, Journal of Cosmology and Astroparticle Physics 11 (2007) 012. https://doi.org/10.1088/1475-7516/2007/11 /012
[36] L.R. Abramo, R.C. Batista, L. Liberato, R. Rosenfeld, Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenarios, Physical Review D 79 (2009) 023516. https://doi.org/10.1103/PhysRevD.79.023516
[37] A. Mehrabi, S. Basilakos, M. Malekjani, Z. Davari, Growth of matter perturbations in clustered holographic dark energy cosmologies, Physical Review D 92 (2015) 123513. https://doi.org/10.1103/PhysRevD.92.123513
[38] M. Rezaei, et al., Constraints to dark energy using PADE parameterizations, The AstroPhysical Journal 843 (2017) 65. https://doi.org/10.3847/1538-4357/aa7898
[39] M. Li, C. Lin, Y. Wang, Some issues concerning holographic dark energy, Journal of Cosmology and Astroparticle Physics 05 (2008) 023.
[40] W. Zimdahl, D. Pavón, L.P. Chimento, Interacting quintessence, Physics Letters B 521 (2001) 133. https://doi.org/10.1016/S0370-2693(01)011 74-1
[41] B. Wang, et al., Interacting dark energy and dark matter: observational constraints from cosmological parameters, Nuclear Physics B 778 (2007) 69. https://doi.org/10.1016/j.nuclphysb.2007.04.037
[42] W. Zimdahl, Interacting dark energy and cosmological equations of state, International Journal of Modern Physics D 14 (2005) 2319. https://doi.org/10.1142/S0218271805007784
[43] A. Nishizawa, A. Taruya, S. Saito, Tracing the red shift evolution of Hubble parameter with gravitational-wave standard sirens, Physical Review D 83 (2011) 084045. https://doi.org/10.1103/PhysRevD.83.084045
[44] M. Moresco, et al., 6% of the Hubble parameter at : direct evidence of the epoch of cosmic re-acceleration, Journal of Cosmology and Astroparticle Physics 05 (2016) 014. https://doi.org/10.1088/1475-7516/2016/05/ 014
[45] R.A. Daly, et al., Improved constraints on the acceleration history of the Universe and the properties of the dark energy, The Astrophysical Journal 677 (2008) 1. https://doi.org/10.1086/528837
[46] T. Abbott, et al., The Dark Energy Survey, arXiv:astro-ph/ 0510346.
[47] Sh. Ghaffari, et al., Tsallis holographic dark energy in the Brans-Dicke cosmology, Eouropean Physical Journal C 78 (2018) 706. https://doi.org/10.1093/mnras/sty903
[48] A. Al. Mamnon, Study of Tsallis holographic dark energy model in the framework of fractal cosmology, Modern Physics Letters A 35 (2020) 2050251. https://doi.org/10.1142/S021773232050251X