[1] K.S. Novoselov et al., Electric field effect in atomically thin carbon films, Science 306 (2004) 666–669. DOI: 10.1126/science.1102896
[3] J. Scott Bunch et al., Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots, Nano Letters 5 (2005) 287–290. https://doi.org/10.1021/nl048111+
[4] Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438 (2005), 201–204. https://doi.org/10.1038/nature04235
[5] C.H. Park, L. Yang, Y.W. Son, M.L. Cohen, S.G. Louie, New generation of massless Dirac fermions in graphene under external periodic potentials, Physical Review Letters 101 (2008), 126804. https://doi.org/10.1103/PhysRevLett.101.126804
[6] D. Pacile, J.C. Meyer, C.O. Girit, A. Zettl, The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes, Applied Physics Letters 92 (2008) 133107. https://doi.org/10.1063/1.2903702
[7] C.T. Pan et al., Nanoscale electron diffraction and plasmon spectroscopy of single- and few-layer boron nitride, Physical Review B 85 (2012). https://doi.org/10.1103/PhysRevB.85.045440
[8] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology 7 (2012) 699-712. https://doi.org/10.1038/nnano.2012.193
[9] Y. Zhang et al., Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary, ACS Nano 7 (2013) 8963-8971. https://doi.org/10.1021/nn403454e
[10] L. Song et al., Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Letters 10 (2010) 3209-3215. https://doi.org/10.1021/nl1022139
[11] K.S. Novoselov et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197–200. https://doi.org/10.1038/nature04233
[12] I. Meric et al., Current saturation in zero-bandgap, topgated graphene field-effect transistors, Nature Nanotechnology 3 (2008) 654–659. https://doi.org/10.1038/nnano.2008.268
[13] J. Bai et al., Graphene nanomesh, Nature Nanotechnology 5 (2010) 190-194. https://doi.org/10.1038/nnano.2010.8
[14] M. Katsnelson, K. Novoselov, A. Geim, Chiral tunneling and the Klein paradox in graphene, Nature Physics 2 (2006) 620-625. https://doi.org/10.1038/nphys384
[15] G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations, Physical Review B 76 (2007) 073103. https://doi.org/10.1103/PhysRevB.76.073103.
[16] J. Sławińska, I. Zasada, Z. Klusek, Energy gap tuning in graphene on hexagonal boron nitride bilayer system , Physical Review B 81 (2010), 155433. https://doi.org/10.1103/PhysRevB.81.155433
[17] A. Black-Schaffer, S. Doniach, Resonating valence bonds and mean-field d-wave superconductivity in graphite, Physical Review B 75 (2007) 134512. https://doi.org/10.1103/PhysRevB.75.134512
[22] R. Gholami, R. Moradian, S. Moradian, W.E. Pickett, “Superconducting Symmetry Phases and Dominant bands in (Ca-) Intercalated AA- Bilayer Graphene” arXiv preprint arXiv:1904.02814
[23] A.O. Sboychakov, A.L. Rakhmanov, A.V. Rozhkov, F. Nori, Bilayer graphene can become a fractional metal, Physical Review B 103 (2021) L081106. https://doi.org/10.1103/PhysRevB.103.L081106
[24] R.M. Ribeiro, N.M.R. Peres, Stability of boron nitride bilayers: Ground-state energies, interlayer distances, and tight-binding description, Physical Review B 83 (2011) 235312. https://doi.org/10.1103/PhysRevB.83.235312
[25] J. Jung, A.H. MacDonald, Accurate tight-binding models for the π bands of bilayer graphene, Physical Review B 89 (2014) 035405. https://doi.org/10.1103/PhysRevB.89.035405
[26] G. Constantinescu, A. Kuc, T. Heine, Stacking in Bulk and Bilayer Hexagonal Boron Nitride, Physical Review Letters 111 (2013) 036104. https://doi.org/10.1103/PhysRevLett.111.0361
[27] S.M. Gilbert et al, Alternative stacking sequences in hexagonal boron nitride, 2D Materials 6 (2019) 021006. DOI:10.1088/2053-1583/AB0E24