Graphene Boron Nitride electronic structure in the framework of Realistic Tight binding Model

Document Type : Full length research Paper

Author

1 Department of Physics, Razi University, Kermanshah, Iran

2 Department of Physics, Ilam University, Ilam, Iran

Abstract

Here in this work, an accurate realistic tight binding model has been used to investigate the electronic band structure of graphene on the top of hexagonal boron nitride substrate. Based on the density functional theory (DFT), the possibility of graphene growth on a lattice-matched hexagonal boron nitride substrate has been investigated. Up to fifth neighbor approximation, the electronic band structure of this lattice has been reproduced by fitting the tight binding hopping parameters to the DFT band structure data. Our results show that the interlayer effects are relatively weak and so, the electronic band structure of single-layer graphene is almost preserved. Due to the inequality of the carbon subsites of this system, a small gap is opened at the Dirac points of the graphene band-structure, which can be used to generate field effect transistors

Keywords

Main Subjects


[1] K.S. Novoselov et al., Electric field effect in atomically thin carbon films, Science 306 (2004) 666–669. DOI: 10.1126/science.1102896
[2] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials 6 (2007) 183–191. https://doi.org/10.1038/nmat1849
[3] J. Scott Bunch et al., Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots, Nano Letters 5 (2005) 287–290. https://doi.org/10.1021/nl048111+
[4] Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438 (2005), 201–204.  https://doi.org/10.1038/nature04235
[5] C.H. Park, L. Yang, Y.W. Son, M.L. Cohen, S.G. Louie, New generation of massless Dirac fermions in graphene under external periodic potentials, Physical Review Letters 101 (2008), 126804. https://doi.org/10.1103/PhysRevLett.101.126804
[6] D. Pacile, J.C. Meyer, C.O. Girit, A. Zettl, The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes, Applied Physics Letters 92 (2008) 133107. https://doi.org/10.1063/1.2903702
[7] C.T. Pan et al., Nanoscale electron diffraction and plasmon spectroscopy of single- and few-layer boron nitride, Physical Review B 85 (2012). https://doi.org/10.1103/PhysRevB.85.045440
[8] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology 7 (2012) 699-712. https://doi.org/10.1038/nnano.2012.193
[9] Y. Zhang et al., Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary, ACS Nano 7 (2013) 8963-8971. https://doi.org/10.1021/nn403454e
[10] L. Song et al., Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Letters 10 (2010) 3209-3215. https://doi.org/10.1021/nl1022139
[11] K.S. Novoselov et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197–200. https://doi.org/10.1038/nature04233
[12] I. Meric et al., Current saturation in zero-bandgap, topgated graphene field-effect transistors, Nature Nanotechnology 3 (2008) 654–659.  https://doi.org/10.1038/nnano.2008.268
[13] J. Bai et al., Graphene nanomesh, Nature Nanotechnology 5 (2010) 190-194. https://doi.org/10.1038/nnano.2010.8
[14] M. Katsnelson, K. Novoselov, A. Geim, Chiral tunneling and the Klein paradox in graphene, Nature Physics 2 (2006) 620-625. https://doi.org/10.1038/nphys384
[15] G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations, Physical Review B 76 (2007) 073103. https://doi.org/10.1103/PhysRevB.76.073103.
[16] J. Sławińska, I. Zasada, Z. Klusek, Energy gap tuning in graphene on hexagonal boron nitride bilayer system , Physical Review B 81 (2010), 155433. https://doi.org/10.1103/PhysRevB.81.155433
[17] A. Black-Schaffer, S. Doniach, Resonating valence bonds and mean-field d-wave superconductivity in graphite, Physical Review B 75 (2007) 134512. https://doi.org/10.1103/PhysRevB.75.134512
[18] R. Gholami, R. Moradian, S. Moradian, W.E. Pickett, Superconducting Phases in Lithium Decorated Graphene LiC6, Scientific reports 8 (2018) 13795. https://doi.org/10.1038/s41598-018-32050-9
[19] Y. Cao, V. Fatemi, S. Fang et al., Unconventional superconductivity in magic-angle graphene superlattices, Nature 556 (2018) 43–50. https://doi.org/10.1038/nature26160  
[20] G.X. Ni, H. Wang, B.Y. Jiang, et al., Soliton superlattices in twisted hexagonal boron nitride, Nature Communications 10 (2019) 4360. https://doi.org/10.1038/s41467-019-12327-x                                              
[21] M. Sanderson, Y.S. Ang, C. Zhang, Klein tunneling and cone transport in AA-stacked bilayer graphene, Physical Review B 88 (2013) 245404.   https://doi.org/10.1103/PhysRevB.103.L081106                                             
[22] R. Gholami, R. Moradian, S. Moradian, W.E. Pickett, “Superconducting Symmetry Phases and Dominant bands in (Ca-) Intercalated AA- Bilayer Graphene” arXiv preprint arXiv:1904.02814                                            
[23] A.O. Sboychakov, A.L. Rakhmanov, A.V. Rozhkov, F. Nori, Bilayer graphene can become a fractional metal, Physical Review B 103 (2021) L081106. https://doi.org/10.1103/PhysRevB.103.L081106                                             
[24] R.M. Ribeiro, N.M.R. Peres, Stability of boron nitride bilayers: Ground-state energies, interlayer distances, and tight-binding description, Physical Review B 83 (2011) 235312. https://doi.org/10.1103/PhysRevB.83.235312                                                    
[25] J. Jung, A.H. MacDonald, Accurate tight-binding models for the π bands of bilayer graphene, Physical Review B 89 (2014) 035405. https://doi.org/10.1103/PhysRevB.89.035405                                                   
[26] G. Constantinescu, A. Kuc, T. Heine, Stacking in Bulk and Bilayer Hexagonal Boron Nitride, Physical Review Letters 111 (2013) 036104. https://doi.org/10.1103/PhysRevLett.111.0361
[27] S.M. Gilbert et al, Alternative stacking sequences in hexagonal boron nitride, 2D Materials 6 (2019) 021006. DOI:10.1088/2053-1583/AB0E24