اثر همزمان پخش بینابینی و دما روی خواص الکترونیک نوری چاه کوانتومی In(1-x)Ga(x)As/InAs/In(1-y)Al(y)As

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک ، دانشکده علوم پایه ، دانشگاه صنعتی ارومیه، ارومیه ، ایران

2 گروه فیزیک، دانشکده علوم پایه ، دانشگاه صنعتی ارومیه ، ارومیه ، ایران

چکیده

تأثیر پخش بینابینی اتم های آلومینیوم ،گالیوم وایندیوم روی نمای پتانسیل، وابستگی دانسیته احتمال حالت زمینه الکترون از مختصه (محور راستای رشد است)و نیز روی ترازهای انرژی الکترون در چاه کوانتومی
برای مقادیر کوچک طول پخش درچارچوب نظریه اختلال مرتبه اول مورد بررسی قرار گرفته است . نشان داده شده است که پخش بینابینی باعث پخش شدن و نامتقارن شدن نمای پتانسیل و افزایش درجه جایگزیدگی دانسیته احتمال می گردد و ترازهای انرژی الکترون در چاه پتانسیل بالا می آیند. همچنین اثر همزمان پخش بینابینی و دما روی پتانسیل شیمیایی وضریب جذب داخل نواری در ساختار مذکور مطالعه شده است. نشان داده شده است که پتانسیل شیمیایی برای یک مقدارمعین طول پخش با افزایش دما کاهش می‌یابد و برای یک مقدار معین دما با افزایش طول پخش افزایش می‌یابد . همچنین نشان داده شده است که افزایش طول پخش منجر به کاهش قابل توجه ضریب جذب داخل نواری و جابجایی به سمت آبی طیف آن می گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Interdiffusion and Temperature on Optoelectronic Properties of In(1-x)Ga(x)As/InAs/In(1-y)Al(y)As Quantum Well

نویسندگان [English]

  • leila mojaradgharabagh 1
  • vigen aziz aghchegala 2
1 Department of Physics, Urmia University of Technology,Urmia, , Iran
2 Department of Physics, Faculty of ScienceUrmia University of Technology,Urmia , Iran
چکیده [English]

The effect of interdiffusion of ,  and  atoms on potential profile, energy levels and ground state probability density of electron in  quantum well is investigatend for small values of diffusion length in the framework of first order perturbation theory. It is shown that interdiffusion leads to an asymmetric profile for the potential and to the rise up of energy levels and to the increase of localization degree of the probabilitily density with a small shift across the growth axis. The spontaneous effects of interdiffusion and temperature on chemical potential energy and the intersubband absorption coefficient is investigated in the mentioned structure as well. It is shown that for a given value of diffusion length, the chemical potential decreases with the increase of temperature, and also for a given value of temperature the chemical potential increases with the increase of diffusion length. It is also shown that the increase of diffusion length leads to a considerable decrease in intersubband absorption coefficient and to the blue shift of its spectrum.

کلیدواژه‌ها [English]

  • Quantum Well
  • Interdiffusion
  • Temperature
  • chemical potansiol
  • intersubband absorption coeficient
[1] T. Vazifehshenas, T. Salavati-fard, Inelastic Coulomb scattering rate within the finitetemperature Hubbard approximation, PhysicaScripta 81 2 (2010). https://doi.org/10.1088/0031-8949/81/02/025701
[2] A. Keshavarz, F. Gheizani Dehsheikh, N. Zamani, Investigation of optical properties of disturbed square quantum well 22 )2016( 734-737. http://opsi.ir/article-1-956-fa.html
[3] U. Yesilgul, F. Ungan, S. Sakiroglu, M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, I. Sökmen, Effect of intense high-frequency laser field on the linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a parabolic quantum well under the applied electric field, Journal of Luminescence 14) 2014 (379–386. https://doi.org/10.1016/j.jlumin.2013.07.062
[4] N. Zeiri, N. Sfin, S. Abdi-Ben Nasrallah, M. Said, Linear and non-linear optical properties in symmetric and asymmetric double quantum wells, Optik 124 )2013( 7044– 7048. https://doi.org/10.1016/j.ijleo.2013.05.169
[5] V.L. Aziz Aghchegala, V.N. Mughnetsyan, A.A. Kirakosyan, Effect of interdiffusion on electronic states and   absorption coefficient of  semiconductor superlattice of cubic symmetry, Physica E, 42) 2010( 1950–1953. https://doi.org/10.1016/j.physe.2010.03.009
[6] V.A. Aghchegala, V. Mughnetsyan, A. Kirakosyan, Effect of interdiffusion on band structure and intersubband absorption coefficient of GaAs/GaAlAs double quantum well, Superlattices and Microstructures, 49 (2011) 99-108. https://doi.org/10.1016/j.spmi.2010.11.008
[7] J.A. Barker, O’Railly, E.P. The influence of inter-diffusion on electron states in quantum dots. Physica E 4 )1999( 231-237. https://doi.org/10.1016/S1386-9477(99)00004-1
[8] Y.X. Dang, W.J. Fan, S.T. Ng, S. Wicaksono, S.F. Yoon, D.H. Zhang, Interdiffusion effect on GaAsSbN/GaAs quantum well structure studied by 10-band k.pmodel, Thin Solid Films 515 )2007( 4435-4440. https://doi.org/10.1016/j.tsf.2006.07.118
[9] S. Fafard, C.N. Allen, Intermixing in quantum dot ensembles with sharp adjustable shells, Applied Physics Letters 75 )1999( 2374-2376. https://doi.org/10.1063/1.125019
[10] O. Ganawan, H.S. Djie, Ooi, B.S. Electronic states of interdiffused quantum dots, Physical Review B 71 (2005) 205319.
[11] Y. Ji, W. Lu, G. Chen, X. Chen, Wang, Q. InAs/GaAs quantum dot intermixing induced by proton implantation, Journal of Applied Physics 93 (2003) 12081211 https://doi.org/10.1063/1.1530717
[12] R. Leon, S. Fafard, P.G. Ruvimov, S Piva. Liliental-Weber, Z. Tunable intersublevel transitions in self-forming semiconductor quantum do. Physical Review B 58 (1998) 4262-4265. https://doi.org/10.1103/PhysRevB.58.R4262
[13] T. Lin, K. Zheng, C.L. Wang, X.Y. Ma. Photoluminescence study of AlGaInP/GaInP quantum well intermixing induced by zinc impurity diffusion. Journal of Crystal Growth 309 )2007( 140-144. https://doi.org/10.1016/j.jcrysgro.2007.09.029
[14] C. Lobo, R. Leon, S. Fafard, P.G, Piva. Intermixing induced changes in the radiative emission from III-V quantum dots, Applied Physics Letters 72 (1998) 2850-2852. https://doi.org/10.1063/1.121478
[15] X.C. Wang, S.J Xu, Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing, Journal of Applied Physics 86 )1999( 2687-2690. https://doi.org/10.1063/1.371111
[16] S.J. Xu, X.C. Wang, Effect of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots, Applied Physics Letters 72 (1998) 3335-3337. https://doi.org/10.1063/1.121595
[17] V.L. Aziz Aghchegala, V.N. Mughnetsyan, A.A. Kirakosyan. Effect of interdiffusion on impurity states in quantum dots of spherical symmetry, Physica E (2010) 1567-1570. https://doi.org/10.1016/j.physe.2009.12.046
[18] S.J. Xu, H.L Wang, M.H .Xie. X-ray diffraction and optical characterization of interdiffusion in self-assembled InAs/GaAs quantum-dot superlatticesm, Applied Physics Letters 77 (2000) 2130-2132. https://doi.org/10.1063/1.1314298
[19] E.M. Kazaryan, A.A. Kostanyan, H.A Sarkisyan.Impurity optical absorption in parabolic quantum well, Physica E 28 (2005) 423-430. https://doi.org/10.1016/j.physe.2005.05.047
[20] A. Hakimyfard, M.G. Barseghyan, A. A. Kirakosyan. Simultaneous effect of pressure and magnetic field on intersubband optical transitions in Poschl-Teller quantum well, Physica E 41) 2009( 1596-1599. https://doi.org/10.1016/j.physe.2009.05.008
[21] V.N. Mughnetsyan, A.A. Kirakosyan. Effect of In and Al interdiffusion on electron states and light absorption in InxGa1-xAs/AlyGa1-y As quantum dots. Journal of Contemporary Physics 42 2 )2007( 55-61. https://link.springer.com/article/10.3103/S1068337207020038
[22] W.P. Gillin, D.J. Dunstan, K.P., Howard, L.K. Homewood, B.J. Sealy, J ,Interdiffusion in InGaAs/GaAs quantum well structures as a function of depth. Journal of Applied Physics 73 (1993) 3782. https://doi.org/10.1063/1.352884
[23] V.L. Aziz-Aghchegala, M. Pishbaz Effect of Interdiffusion on Optoelectronic  Properties of  Quantum Well, Procedia Materials Scince 11 (2015) 727-732. https://doi.org/10.1016/j.mspro.2015.11.057
[24] P.K. Basu, Theory of Optical Processes in Semiconductors, Bulk and Microstructures, Clarendon Press, Oxford (1997(. https://doi:10.1093/acprof:oso/9780198526209.001.0001
[25] M. Abramowitz, J.A. Stegun, (Eds.). Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards, Washington (1964)
[26] S. Adachi, Journal of Applied Physics 58 (1985).
[27] Ying Wang, Xinzhi Sheng, Qinglin Guo, Xiaoli Li, Shufang Wang, Guangsheng Fu, Yuriy I. Mazur, Yurii Maidaniuk, Morgan E. Ware, Gregory J. Salamo, Baolai Liang & Diana L. Huffaker. Photoluminescence Study of the Interface Fluctuation Effect for InGaAs/InAlAs/InP Single Quantum Well with Different Thickness. Nanoscale Research Letters 12 229 (2017). https://d-nb.info/1130075567/3410.1186/s11671-017-1998-8
[28] Jie Liu1,2, Jinlei Lu1,2, Chen Yue1,2, Xuanzhang Li1,2, Hong Chen1 and Lu Wang1. Express.The Japan Society of Applied Physics, find out moreThe Japan Society of Applied Physics, find out moreInAs/InGaAs/InAlAs interband quantum well infrared photodetector (IQWIP) with cut-off response wavelength at 1.93 μm, Citation Jie Liu et al (2019). 10.7567/1882-0786/ab017f
[29] R.A. Salii, S.A. Mintairov1, M.A. Mintairov1, M.Z. Shvarts, N.A. Kalyuzhnyy, Electro-optical properties of InAs and In0.8Ga0.2As quantum dots in GaAs solar cells Journal of Physics: Conf. Series 1135 (2018) 012078. https://doi:10.1088/1742-6596/1135/1/012078
[30] M. Sabaeian, S. Azadi, M. Shahzadeh, I. kazeminezhad, Investigation of size effect on the emission properties of InAs/GaAs conical-shaped quantum dot lasers, Journal of Research on Many-body Systems 4 8 (2015) 55-67. https://jrmbs.scu.ac.ir/article_11242.html?lang=en