[3] U. Yesilgul, F. Ungan, S. Sakiroglu, M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, I. Sökmen, Effect of intense high-frequency laser field on the linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a parabolic quantum well under the applied electric field, Journal of Luminescence 14) 2014 (379–386. https://doi.org/10.1016/j.jlumin.2013.07.062
[4] N. Zeiri, N. Sfin, S. Abdi-Ben Nasrallah, M. Said, Linear and non-linear optical properties in symmetric and asymmetric double quantum wells, Optik 124 )2013( 7044– 7048. https://doi.org/10.1016/j.ijleo.2013.05.169
[5] V.L. Aziz Aghchegala, V.N. Mughnetsyan, A.A. Kirakosyan, Effect of interdiffusion on electronic states and absorption coefficient of semiconductor superlattice of cubic symmetry, Physica E, 42) 2010( 1950–1953. https://doi.org/10.1016/j.physe.2010.03.009
[6] V.A. Aghchegala, V. Mughnetsyan, A. Kirakosyan, Effect of interdiffusion on band structure and intersubband absorption coefficient of GaAs/GaAlAs double quantum well, Superlattices and Microstructures, 49 (2011) 99-108. https://doi.org/10.1016/j.spmi.2010.11.008
[8] Y.X. Dang, W.J. Fan, S.T. Ng, S. Wicaksono, S.F. Yoon, D.H. Zhang, Interdiffusion effect on GaAsSbN/GaAs quantum well structure studied by 10-band k.pmodel, Thin Solid Films 515 )2007( 4435-4440. https://doi.org/10.1016/j.tsf.2006.07.118
[9] S. Fafard, C.N. Allen, Intermixing in quantum dot ensembles with sharp adjustable shells, Applied Physics Letters 75 )1999( 2374-2376. https://doi.org/10.1063/1.125019
[10] O. Ganawan, H.S. Djie, Ooi, B.S. Electronic states of interdiffused quantum dots, Physical Review B 71 (2005) 205319.
[11] Y. Ji, W. Lu, G. Chen, X. Chen, Wang, Q. InAs/GaAs quantum dot intermixing induced by proton implantation, Journal of Applied Physics 93 (2003) 12081211 https://doi.org/10.1063/1.1530717
[12] R. Leon, S. Fafard, P.G. Ruvimov, S Piva. Liliental-Weber, Z. Tunable intersublevel transitions in self-forming semiconductor quantum do. Physical Review B 58 (1998) 4262-4265. https://doi.org/10.1103/PhysRevB.58.R4262
[13] T. Lin, K. Zheng, C.L. Wang, X.Y. Ma. Photoluminescence study of AlGaInP/GaInP quantum well intermixing induced by zinc impurity diffusion. Journal of Crystal Growth 309 )2007( 140-144. https://doi.org/10.1016/j.jcrysgro.2007.09.029
[14] C. Lobo, R. Leon, S. Fafard, P.G, Piva. Intermixing induced changes in the radiative emission from III-V quantum dots, Applied Physics Letters 72 (1998) 2850-2852. https://doi.org/10.1063/1.121478
[15] X.C. Wang, S.J Xu, Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing, Journal of Applied Physics 86 )1999( 2687-2690. https://doi.org/10.1063/1.371111
[16] S.J. Xu, X.C. Wang, Effect of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots, Applied Physics Letters 72 (1998) 3335-3337. https://doi.org/10.1063/1.121595
[17] V.L. Aziz Aghchegala, V.N. Mughnetsyan, A.A. Kirakosyan. Effect of interdiffusion on impurity states in quantum dots of spherical symmetry, Physica E (2010) 1567-1570. https://doi.org/10.1016/j.physe.2009.12.046
[18] S.J. Xu, H.L Wang, M.H .Xie. X-ray diffraction and optical characterization of interdiffusion in self-assembled InAs/GaAs quantum-dot superlatticesm, Applied Physics Letters 77 (2000) 2130-2132. https://doi.org/10.1063/1.1314298
[20] A. Hakimyfard, M.G. Barseghyan, A. A. Kirakosyan. Simultaneous effect of pressure and magnetic field on intersubband optical transitions in Poschl-Teller quantum well, Physica E 41) 2009( 1596-1599. https://doi.org/10.1016/j.physe.2009.05.008
[22] W.P. Gillin, D.J. Dunstan, K.P., Howard, L.K. Homewood, B.J. Sealy, J ,Interdiffusion in InGaAs/GaAs quantum well structures as a function of depth. Journal of Applied Physics 73 (1993) 3782. https://doi.org/10.1063/1.352884
[25] M. Abramowitz, J.A. Stegun, (Eds.). Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards, Washington (1964)
[26] S. Adachi, Journal of Applied Physics 58 (1985).
[27] Ying Wang, Xinzhi Sheng, Qinglin Guo, Xiaoli Li, Shufang Wang, Guangsheng Fu, Yuriy I. Mazur, Yurii Maidaniuk, Morgan E. Ware, Gregory J. Salamo, Baolai Liang & Diana L. Huffaker. Photoluminescence Study of the Interface Fluctuation Effect for InGaAs/InAlAs/InP Single Quantum Well with Different Thickness. Nanoscale Research Letters 12 229 (2017). https://d-nb.info/1130075567/3410.1186/s11671-017-1998-8
[28] Jie Liu1,2, Jinlei Lu1,2, Chen Yue1,2, Xuanzhang Li1,2, Hong Chen1 and Lu Wang1. Express.The Japan Society of Applied Physics, find out moreThe Japan Society of Applied Physics, find out moreInAs/InGaAs/InAlAs interband quantum well infrared photodetector (IQWIP) with cut-off response wavelength at 1.93 μm, Citation Jie Liu et al (2019). 10.7567/1882-0786/ab017f
[29] R.A. Salii, S.A. Mintairov1, M.A. Mintairov1, M.Z. Shvarts, N.A. Kalyuzhnyy, Electro-optical properties of InAs and In0.8Ga0.2As quantum dots in GaAs solar cells Journal of Physics: Conf. Series 1135 (2018) 012078. https://doi:10.1088/1742-6596/1135/1/012078
[30] M. Sabaeian, S. Azadi, M. Shahzadeh, I. kazeminezhad, Investigation of size effect on the emission properties of InAs/GaAs conical-shaped quantum dot lasers, Journal of Research on Many-body Systems 4 8 (2015) 55-67. https://jrmbs.scu.ac.ir/article_11242.html?lang=en