تأثیر ویژگی‌های فیزیکی تیپ و زیرلایه بر تقویت میدان الکتریکی در طیف‌سنجی رامان تقویت‌شده با تیپ

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 دانشکده فیزیک، دانشگاه علم و صنعت، تهران، ایران

2 گروه فیزیک، دانشکده علوم پایه، دانشگاه قم، قم، ایران

چکیده

در این مقاله از روش تفاضل محدود در حوزه زمان برای تخمین شدت و توزیع میدان الکتریکی تقویت شده بصورت موضعی در طیف سنجی رامان تقویت شده با تیپ (TERS) در مجاورت تیپ مخروطی شکل به قطر نوک 10 نانومتر استفاده شده است. ضمن مقایسه میدان الکتریکی تقویت شده در دو پیکربندی با زیرلایه و بدون زیرلایه، تأثیر استفاده از مواد مختلف برای تیپ در مجاورت زیر لایه و همچنین اثر لایه‌نشانی نازک فلزهای مختلف بر روی تیپ در میزان تقویت میدان الکتریکی بررسی شده است. جنس تیپ در سیستم TERS از موادی نظیر طلا، نقره، آلومینیوم، مس و سیلیکون و همچنین حالت ترکیبی از این مواد بصورت لایه نشانی در نظر گرفته شده است. از نتایج شبیه‌سازی‌ بدست آمده می توان برای پیش‌بینی شدت و توزیع میدان الکتریکی تقویت شده موضعی در طراحی ساختار هندسی و فیزیکی مناسب برای پیاده سازی تجربی TERS استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

The impact of physical properties of tip and substrate on electric field enhancement in tip-enhanced Raman spectroscopy (TERS)

نویسندگان [English]

  • Maryam Bahreini 1
  • Adele Noori 2
  • Seyed Hashem Aref 2
1 School of Physics, Iran University of Science and Technology, Tehran, I.R. Iran
2 Department of Physics, Faculty of Science, University of Qom, Qom, I.R. Iran
چکیده [English]

In this paper, the finite difference time domain (FDTD) method is used to estimate the intensity and distribution of localized electric field enhancement in tip-enhanced Raman spectroscopy (TERS) in the vicinity of a conical tip with a diameter of 10 nm. While comparing the enhancement of electric field in two configurations with and without substrate, the effect of using different tip materials in the vicinity of the substrate and also the effect of different thin film coatings on the tip in the amount of electric field enhancement have been investigated. Tips in TERS systems are made of materials such as gold, silver, aluminum, copper, and silicon, as well as a combination of these materials as a coating. Our simulation results can be used to predict the intensity and distribution of a localized electric field enhancement using a suitable geometric and physical structure design for the experimental implementation of TERS.

کلیدواژه‌ها [English]

  • Raman spectroscopy
  • Electric field enhancement
  • Tip-enhanced Raman spectroscopy
  • TERS
  • Finite difference time domain
 
[1] R.S. de Jong, A spectroscopy facility for many. Nature Astronomy 3 (2019) 574.   https://doi.org/10.1038/s41550-019-0808-x.
[2] A. Safi, Bahreini, M. Tavassoli, S.H. Comparative Study of Two Methods of Orthogonal Double-Pulse Laser-Induced Breakdown Spectroscopy of Aluminum. Optics and Spectroscopy 120 (2016) 367–378. https://doi.org/10.1134/S0030400X16030024.
[3] M Bahreini, Role of optical spectroscopic methods in neuro-oncological sciences, Journal of Lasers in Medical Science 6 (2015) 51–61. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431964.
[4] C. Gao, W. Lin, J. Wang, R. Wang, J. Wang, Principle and application of tip-enhanced raman scattering, Plasmonics 13 (2018) 1343-1358. https://doi.org/10.1007/s11468-017-0638-6).
[5] J. Wessel, Surface-enhanced optical microscopy, Journal of Optical Society of Americal B 2 (1985) 1538-1541. https://doi.org/10.1364/JOSAB.2.001538
[6] G.L. Bartolomeo, Y. Zhang, N. Kumar, R. Zenobi, Molecular Perturbation Effects in AFM-Based Tip-Enhanced Raman Spectroscopy: Contact versus Tapping Mode. Analytical Chemistry 93 (2021) 15358-15364. https://doi.org/10.1021/acs.analchem.1c03004
[7] J. Stadler, B. Oswald, T. Schmid, R. Zenobi, Characterizing unusual metal substrates for gap-mode tipenhanced Raman spectroscopy, Journal of Raman Spectroscopy 44 (2013) 227-233. http://dx.doi.org/10.1002/jrs.4169
[8] X. Chen, P. Liu, Z. Hu, L. Jensen, High-resolution tip-enhanced Raman scattering probes sub-molecular density changes, Nature communications 10 (2019) 1-9. https://doi.org/10.1038/s41467-019-10618-x
[9] L. Meng, M. Sun, J. Chen, Z. Yang, A nanoplasmonic strategy for precision in-situ measurements of tip-enhanced Raman and fluorescence spectroscopy, Scientific reports 6 (2016) 1-7. https://doi.org/10.1038/srep19558
[10] C. Lee, S.T. Kim, B.G. Jeong, S.J. Yun, Y.J. Song, Y.H. Lee, D.J. Park, M.S. Jeong, Tip-enhanced Raman scattering imaging of two-dimensional tungsten disulfide with optimized tip fabrication process, Scientific reports 7 (2017) 1-7. https://doi.org/10.1038/srep40810  Bahreini, The effect of substrate on electric field enhancement of tip-enhanced Raman spectroscopy (TERS), The 6th Biennial International Conference on Ultrafine Grained and Nanostructured Materials (UFGNSM), Kish, Iran (2017). ​https://doi.org/10.1063/1.5018945Bahreini, The dependence of electric field enhancement on the tip parameters in tip-enhanced Raman spectroscopy (TERS), 1st national conference on nano from synthesis to industry (2017). https://www.civilica.com/Paper-NFSI01-NFSI01_183.html Bahreini, Investigating the effect of gold coating on the silicon tip in electric field enhancement of tip-enhanced Raman spectroscopy system, 1th Conference on Optoelectronics, Applied Optics and Microelectronics (OAM) Ardabil, Iran )2019(.  http://repository.uma.ac.ir/id/eprint/11040
[11] M. Bahreini, Design and optimization of tip-enhanced Raman spectroscopy system, 25th Iranian conference of optic and photonic (ICOP2019) (2019). http://opsi.ir/article-1-1670-en.html
[12] N.K .Zanjani, S. Vedraine, F. Lagugné-Labarthet, Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light, Optics Express 21 (2013) 25271-25276. https://doi.org/10.1364/oe.21.025271
[13] M.M. Sartin, H. Su, X. Wang, B. Rena, Tip-enhanced Raman spectroscopy for nanoscale probing of dynamic chemical systems, The Journal of Chemical Physics 153 (2020) 170901. https://doi.org/10.1063/5.0027917
[14] C.A. Barrios, A.V. Malkovskiy, A.M. Kisliuk, A.P. Sokolov, M.D. Foster, Highly stable, protected plasmonic nanostructures for tip enhanced Raman spectroscopy, the journal of physical chemistry c 113 (2009) 8158–8161. https://doi.org/10.1021/jp8098126
[15] P.B. Johnson, R.W. Christy, Optical      constants of the noble metals, Physical review B 6 (1972) 4370. https://doi.org/10.1103/PhysRevB.6.4370
E.D. Palik, Gallium Arsenide (GaAs), Handbook of optical constants of solids (1985) 429-443. https://doi.org/10.1016/B978-012544415-6.50018-2
[16] N. Kazemi-Zanjani, S. Vedraine, F. Lagugné-Labarthet, Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light, Optics Express 21 (2013) 25271-25276. https://doi.org/10.1364/OE.21.025271
[17] S. Vedraine, P. Torchio, D. Duche, F. Flory, J.J. Simon, J. Le Rouzo, L. Escoubas, Intrinsic absorption of plasmonic structures for organic solar cells, Solar Energy Materials And Solar Cells 95 (2011) S57–S64. https://doi.org/10.1016/j.solmat.2010.12.045
[18] C. Huber, A. Trügler, U. Hohenester, Y. Prior, W. Kautek, Optical near-field excitation at commercial scanning probe microscopy tips: a theoretical and experimental investigation, Physical chemistry chemical physics 16 (2014) 2289-2296.     https://doi.org/10.1039/C3CP51730F
[19] D. Kim, C. Lee, B.G. Jeong, S.H. Kim, M.S. Jeong, Fabrication of highly uniform nanoprobe via the  automated process for tip-enhanced Raman spectroscopy, Nanophotonics 9 (2020) 2989-2996. https://doi.org/10.1515/nanoph-2020-0210).