ویژگی های محدود کننده ی نوری نانوذرات پلاتین و طلا برحسب شکست غیرخطی گرمایی

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه صنعتی خاتم الانبیاء، بهبهان، ایران

چکیده

چکیده
در این مقاله، محلول های کلوئیدی نانوذرات طلا و پلاتین در آب مقطر با استفاده از روش کندگی لیزر پالس 18 نانومتری ورق‌های طلا و پلاتین خالص ساخته می‌شوند. تشکیل نانوذرات با استفاده از طیف جذب UV-Vis و مشاهدهء پیک پلاسمونی ویژه نانوذرات طلا و پلاتین و همچنین با استفاده از میکروسکوپ الکترونی عبوری تأیید می‌شود. پاسخ غیرخطی نوری محلول‌های نانوذرات طلا و پلاتین در آب تحت تابش لیزرپیوسته (( CW با طول موجnm 532 توسط تکنیک جاروب- zروزنه بسته اندازه گیری می‌شوند. عدم تقارن منحنی‌های جاروب- zحاصل، همراه با این حقیقت که تابش لیزر، پیوسته است، نشان می‌دهد که منشأ پاسخ غیرخطی نوری، گرمایی است. رفتار محدودکنندهء نوری محلول نانوذرات طلا و پلاتین در آب تحت تابش لیزر کم توان CW با طول موج 532 نانومتر بررسی می‌شود. نتایج نشان می‌دهد که خودواگرایی غیرخطی می‌تواند رفتار محدودکنندهء نوری را افزایش دهد. می‌توان با مهندسی کردن هندسه‌ء آزمایش، آستانه‌ء محدودیت نوری را به حالت تنظیم درآورد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optical limiting characteristics of platinum and gold nanoparticles based on thermal nonlinear refraction

نویسندگان [English]

  • Mina Eslamifar
  • mohammad eghbali
  • mojtaba mokari
Physics Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
چکیده [English]

Abstract
In this work, the platinum and gold nanoparticles colloids are fabricated by 18 ns pulsed laser ablation of pure platinum and gold plates in the distilled water. The formation of the nanoparticles has been evidenced by taking the UV-Vis absorption spectrum and observing the surface plasmon absorption band of gold and platinum nanoparticles as well as by transmission electron microscopy.The nonlinear optical properties of the platinum and gold nanoparticles in distilled water are measured by the closed- aperture Z-scan technique under exposure to a low- power continuous-wave laser at a wavelength of 532 nm. The observed asymmetric nature of the Z-scan measurements along with the fact that the laser light is CW suggests that the origin of the nonlinear refractive index is thermo-optic. The optical limiting performance of the platinum and gold nanoparticles are characterized by exposure to CW laser operating at a wavelength of 532 nm. The results show that nonlinear self-defocusing effect increases the performance of the optical limiting. The engineering of the experimental geometry can accomplish the tunability of the limiting threshold of optical limiters.

کلیدواژه‌ها [English]

  • Platinum nanoparticles
  • Gold nanoparticles
  • Thermal nonlinear refraction
  • Optical limiter
[1] K. Sendhil, C. Vijayan, M.P. Kothiyal, Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphrin, Optics & Laser Technology 38 (2006) 512-515. https://doi.org/10.1016/j.optlastec.2004.12.005
[2] K. Jamshidi-Ghalel, N. Mansour, Nonlinear absorption and optical limiting in Duran glass induced by 800 nm femtosecond laser pulses, Journal of Physics D: Applied Physics 40 (2007) 366-369. https://doi.org/10.1088/0022-3727/40/2/012
[3] R.K. Rekha, A. Ramalingam, Nonlinear characteristic and optical limiting effect of oil red O azo dye in liquid and solid media, Journal of Modern Optics 56 (2009) 1096-1102. https://doi.org/10.1080/09500340902944020
[4] K. Sathiyamoorthy, C. Vijayan, M.P. Kothiyal, Low power optical limiting in CIAI-Phthalocyanine due to self-defocusing and self-phase modulation effects, Optical Materials 31 (2008) 79-86. https://doi.org/10.1016/j.optmat.2008.01.013
[5] I.C. Khoo, R.R. Michael, G.M. Finn, Self- phase modulation and optical limiting of a low power CO2 laser with a nematic liquid- crystal film, Applied Physics Letters 52 (1988) 2108-2110. https://doi.org/10.1063/1.99550
[6] S. Pu, L. Yao, F. Guan, M. Liu, Threshold- tunable optical limiters based on nonlinear refraction in ferrosols, Optics Communications 282 (2009) 908-913. https://doi.org/10.1016/j.optcom.2008.11.041
[7] L.W. Tutt, T.F. Boggess, A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials, Progress in Quantum Electronics 17 (1993) 299-338. https://doi.org/10.1016/0079-6727(93)90004-S
[8] R. Karimzadeh, H. Aleali, N. Mansour, Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter, Optics Communications 284 (2011) 2370-2375. https://doi.org/10.1016/j.optcom.2011.01.014
[9] P.V. Kazakevich, A.V. Simakin, V.V. Voronov, G.A. Shafeev, Laser induced synthesis of nanoparticles in liquids, Applied Surface Science 252 (2006) 4373-4380. https://doi.org/10.1016/j.apsusc.2005.06.059
[10] W.T. Nichols, T. Sasaki, N. Koshizaki, Laser ablation of platinum target in water. Laser ablation mechanisms, Journal of Applied Physics 100 (2006) 114911-114917. https://doi.org/10.1063/1.2390640
[11] B. Yu, C. Zhu, F. Gan, Y. Huang, Optical limiting properties of In2O3 nanoparticles under cw laser illumination, Optical Materials 7 (1997) 103-107. https://doi.org/10.1016/S0925-3467(96)00067-5
[12] O. Muller, V. Pichot, L. Merlat, D. Spitzer, Optical limiting properties of surface functionalized nanodiamonds probed by the
Z-scan method, Scientific reports 9 (2019) 519-529-539. https://doi.org/10.1038/s41598-018-36838-7
[13] K.G. Mikheev, et al., Optical limiting in suspension of detonation nanodiamonds in engine oil, Journal of Nanophotonics 11 (2017) 32502-32509. https://doi.org/101117/1.JNP.11.032502
[14] O. Muller, V. Pichot, L. Merlat, D. Spitzer, Nonlinear optical behavior of porphyrin functionalized nanodiamonds: an efficient material for optical power limiting, Applied Optics 55 (2016) 3801-3807. https://doi.org/10.1364/AO.55.003801
[15] V. Vanyukov, et al., Near-IR nonlinear optical filter for optical communication window, Applied Optics 54 (2015) 3290-3298. https://doi.org/10.1364/AO.54.003290
[16] A.V. Kabashin, M. Meunier, C. Kingston, J.H.T. Luong, Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins, Journal of Physical Chemistry B 107 (2003) 4527-4531. https://doi.org/10.1021/jp034345q
[17] H. Aleali, L. Sarkhosh, M. Eslamifar, R. Karimzadeh, N. Mansour, Thermo-optical properties of colloids enhanced by gold nanoparticles, Japanese Journal of Applied Physics 49 (2010) 085002-085007. https://doi.org/10.1143/JJAP.49.085002
[18] F. Cuppo, A.M. FigueiredoNeto, S.L. Gomez, P. Palffy-Muhoray, Thermal lens model compared with the Sheik-Bahae formalism in interpreting Z-scan experiments on lyotropic liquid crystals, Journal of the Optical  Society America B 19 (2002) 1342-1348. https://doi.org/10.1364/JOSAB.19.001342
[19] R.W. Boyd, Nonlinear optics, Academics, New York, (2003).
[20] X. Zhang, H. Gu, M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, Experimental Thermal and Fluid Science 3 (2007) 593-599. https://doi.org/10.1016/j.expthermflusci.2006.06.009
[21] R. Spill, W. Kohler, G. Lindenblatt, W. Schaertl, Thermal diffusion and soret feedback of gold-doped polyorganosiloxane nanospheres in toluene, Physical Review E 62 (2000) 8361-8369. https://doi.org/10.1103/PhysRevE.62.8361
[22] W. Schaertl, C. Roos, Convection and thermodiffusion of colloidal gold tracers by laser light scattering, Physical Review E 60 (1999) 2020-2027. https://doi.org/10.1103/PhysRevE.60.2020
[23] H. Aleali, N. Mansour, Nonlinear Responses and Optical Limiting Behavior of Ag Nanoparticle Suspension, Journal of Sciences 21 (2010) 273-278.
[24] R.A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda, Low- and high-order nonlinear optical properties of Au, Pt, Pd and Ru nanoparticles, Journal of Applied Physics 103 (2008) 063102-063109. https://doi.org/10.1063/1.2887990
[25] L. Francois, M. Mostafavi, J. Belloni, Optical limitation induced by gold clusters. 1. Size effect, Journal of Physical Chemistry B 104 (2000) 6133-6138. https://doi.org/10.1021/jp 9944482
[26] H. Pan, W. Chen, Y. Ping, W. Ji, Optical limiting properties of metal nanowires, Applied Physics Letters 88 (2006) 223106-223108.  https://doi.org/10.1063/1.2208549
[27] Y.P. Rakovich, M.V. Artemyev, A.G. Rolo, M.I. Vasilevskiy, M.J.M. Gomes, Third-order optical nonlinearities in thin films of CdS nanocrystals, Physica  Status Solidi B 224 (2001) 319-325. https://doi.org/10.1002/15213951(200103)224:1<319::AID-PSSB319>3.0.CO;2-O
[28] B. Yu, Y. Gu, Y. Mao, C. Zhu, F. Gan, Nonlinear optical properties of PbS nanoparticles under CW laser illumination, Journal of Nonlinear Optical Physics & Materials 9 (2000) 117-123. https://doi.org/10.1142/S021886350000011X
[29] R.F. Souza, M.A.R.C. Alencar, E. Da Silva, M.R. Meneghtti, Nonlinear optical properties of Au nanoparticles colloidal system: local and nonlocal responses, Applied Physics Letters 92 (2008) 201902-201904. https://doi.org/10.1063/1.2929385
[30] M. Tajdidzadeh, A.B. Zakaria, Z. Abidin Talib, A.S. Gene, S. Shirzadi, Optical Nonlinear Properties of Gold Nanoparticles Synthesized by Laser Ablation in Polymer Solution, Journal of Nanomaterials 2017 (2017) 4803843-4803852. https://doi.org/10.1155/2017/4803843