[1] K. Sendhil, C. Vijayan, M.P. Kothiyal, Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphrin, Optics & Laser Technology 38 (2006) 512-515. https://doi.org/10.1016/j.optlastec.2004.12.005
[3] R.K. Rekha, A. Ramalingam, Nonlinear characteristic and optical limiting effect of oil red O azo dye in liquid and solid media, Journal of Modern Optics 56 (2009) 1096-1102. https://doi.org/10.1080/09500340902944020
[4] K. Sathiyamoorthy, C. Vijayan, M.P. Kothiyal, Low power optical limiting in CIAI-Phthalocyanine due to self-defocusing and self-phase modulation effects, Optical Materials 31 (2008) 79-86. https://doi.org/10.1016/j.optmat.2008.01.013
[5] I.C. Khoo, R.R. Michael, G.M. Finn, Self- phase modulation and optical limiting of a low power CO2 laser with a nematic liquid- crystal film, Applied Physics Letters 52 (1988) 2108-2110. https://doi.org/10.1063/1.99550
[7] L.W. Tutt, T.F. Boggess, A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials, Progress in Quantum Electronics 17 (1993) 299-338. https://doi.org/10.1016/0079-6727(93)90004-S
[8] R. Karimzadeh, H. Aleali, N. Mansour, Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter, Optics Communications 284 (2011) 2370-2375. https://doi.org/10.1016/j.optcom.2011.01.014
[9] P.V. Kazakevich, A.V. Simakin, V.V. Voronov, G.A. Shafeev, Laser induced synthesis of nanoparticles in liquids, Applied Surface Science 252 (2006) 4373-4380. https://doi.org/10.1016/j.apsusc.2005.06.059
[10] W.T. Nichols, T. Sasaki, N. Koshizaki, Laser ablation of platinum target in water. Laser ablation mechanisms, Journal of Applied Physics 100 (2006) 114911-114917. https://doi.org/10.1063/1.2390640
[12] O. Muller, V. Pichot, L. Merlat, D. Spitzer, Optical limiting properties of surface functionalized nanodiamonds probed by the
Z-scan method, Scientific reports 9 (2019) 519-529-539. https://doi.org/10.1038/s41598-018-36838-7
[13] K.G. Mikheev, et al., Optical limiting in suspension of detonation nanodiamonds in engine oil, Journal of Nanophotonics 11 (2017) 32502-32509. https://doi.org/101117/1.JNP.11.032502
[14] O. Muller, V. Pichot, L. Merlat, D. Spitzer, Nonlinear optical behavior of porphyrin functionalized nanodiamonds: an efficient material for optical power limiting, Applied Optics 55 (2016) 3801-3807. https://doi.org/10.1364/AO.55.003801
[15] V. Vanyukov, et al., Near-IR nonlinear optical filter for optical communication window, Applied Optics 54 (2015) 3290-3298. https://doi.org/10.1364/AO.54.003290
[16] A.V. Kabashin, M. Meunier, C. Kingston, J.H.T. Luong, Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins, Journal of Physical Chemistry B 107 (2003) 4527-4531. https://doi.org/10.1021/jp034345q
[17] H. Aleali, L. Sarkhosh, M. Eslamifar, R. Karimzadeh, N. Mansour, Thermo-optical properties of colloids enhanced by gold nanoparticles, Japanese Journal of Applied Physics 49 (2010) 085002-085007. https://doi.org/10.1143/JJAP.49.085002
[18] F. Cuppo, A.M. FigueiredoNeto, S.L. Gomez, P. Palffy-Muhoray, Thermal lens model compared with the Sheik-Bahae formalism in interpreting Z-scan experiments on lyotropic liquid crystals, Journal of the Optical Society America B 19 (2002) 1342-1348. https://doi.org/10.1364/JOSAB.19.001342
[19] R.W. Boyd, Nonlinear optics, Academics, New York, (2003).
[20] X. Zhang, H. Gu, M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, Experimental Thermal and Fluid Science 3 (2007) 593-599. https://doi.org/10.1016/j.expthermflusci.2006.06.009
[21] R. Spill, W. Kohler, G. Lindenblatt, W. Schaertl, Thermal diffusion and soret feedback of gold-doped polyorganosiloxane nanospheres in toluene, Physical Review E 62 (2000) 8361-8369. https://doi.org/10.1103/PhysRevE.62.8361
[22] W. Schaertl, C. Roos, Convection and thermodiffusion of colloidal gold tracers by laser light scattering, Physical Review E 60 (1999) 2020-2027. https://doi.org/10.1103/PhysRevE.60.2020
[23] H. Aleali, N. Mansour, Nonlinear Responses and Optical Limiting Behavior of Ag Nanoparticle Suspension, Journal of Sciences 21 (2010) 273-278.
[24] R.A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda, Low- and high-order nonlinear optical properties of Au, Pt, Pd and Ru nanoparticles, Journal of Applied Physics 103 (2008) 063102-063109. https://doi.org/10.1063/1.2887990
[25] L. Francois, M. Mostafavi, J. Belloni, Optical limitation induced by gold clusters. 1. Size effect, Journal of Physical Chemistry B 104 (2000) 6133-6138. https://doi.org/10.1021/jp 9944482
[26] H. Pan, W. Chen, Y. Ping, W. Ji, Optical limiting properties of metal nanowires, Applied Physics Letters 88 (2006) 223106-223108. https://doi.org/10.1063/1.2208549
[28] B. Yu, Y. Gu, Y. Mao, C. Zhu, F. Gan, Nonlinear optical properties of PbS nanoparticles under CW laser illumination, Journal of Nonlinear Optical Physics & Materials 9 (2000) 117-123. https://doi.org/10.1142/S021886350000011X
[29] R.F. Souza, M.A.R.C. Alencar, E. Da Silva, M.R. Meneghtti, Nonlinear optical properties of Au nanoparticles colloidal system: local and nonlocal responses, Applied Physics Letters 92 (2008) 201902-201904. https://doi.org/10.1063/1.2929385
[30] M. Tajdidzadeh, A.B. Zakaria, Z. Abidin Talib, A.S. Gene, S. Shirzadi, Optical Nonlinear Properties of Gold Nanoparticles Synthesized by Laser Ablation in Polymer Solution, Journal of Nanomaterials 2017 (2017) 4803843-4803852. https://doi.org/10.1155/2017/4803843