سنتز وخصوصیت سنجی کامپوزیت Fe3O4 / پلی آنیلین میکرولوله به عنوان حسگر الکتروشیمیایی برای تشخیص کاتیونهای سرب (II)

نوع مقاله : مقاله پژوهشی کامل

نویسنده

گروه شیمی، دانشکده علوم، دانشگاه فرهنگیان، تهران، ایران

چکیده

در کار حاضر کامپوزیت Fe3O4/پلی آنیلین میکرو لوله سنتز شد وبه عنوان یک ماده حساس برای تشخیص کاتیون سرب (II) جهت بهبود عملکرد الکترود کربن شیشه‌ای) (GCE مورد استفاده قرارگرفت. نتایج حاصل از میکروسکوپ الکترونی و پراش اشعه ایکس به ترتیب ریخت میکرو لوله های پلی آنیلین و حضور نانو ذرات Fe3O4را تأیید نمود. از طرف دیگر، نتایج حاصل از طیف سنجی امپدانس الکتروشیمیایی، کاهش مقاومت الکتریکی الکترود بهبود یافته با کامپوزیت Fe3O4/ پلی آنیلین میکرو لوله به دلیل حضور میکرو لوله های پلی آنیلین را تأیید نمود. نتایج حاصل از طیف سنجی امپدانس یک افزایش در خواص خازنی الکترود بهبود یافته در مقایسه با الکترود کربن شیشه‌ای را تأیید نمود که نشان دهندهء افزایش سطح قابل دسترس الکترود بهبود یافته بود. الکترود حاصل یک انتخاب پذیری بالا، حساسیتnM-1 .µA. cm-2 452/1 به تشخیص کاتیون سرب (II) و حد تشخیص nM 027/0 را با توجه به نتایج آزمایش ها نشان داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis and characterization of Fe3O4/Polyaniline microtube composite as electrochemical sensor for Lead (II) detection

نویسنده [English]

  • Mohammad Reza Mahmoudian
Department of Chemistry, Faculty of Science University of Farhangian, Tehran, Iran
چکیده [English]

In the present study, Fe3O4/polyaniline micro-tube nanocomposite (Fe3O4/PAn MT-NCs) was synthesized and used as a sensitive material for the detection of lead (II) cation to enhance the performance of glassy carbon electrode (GCE). The results of the scanning electron microscope (SEM) and X-Ray diffraction (XRD) confirmed the morphology of PAn MTs and the presence of Fe3O4 nanoparticles respectively. The electrochemical impedance spectroscopy (EIS) results showed a decrease in the electron transfer resistance in the Fe3O4/PAn MT-NCs/GCE due to the presence of PAn MTs. The increase in the available surface area of the Fe3O4 / PAn MT-NCs/GCE in comparison with bare GCE was confirmed by the increase of the capacitive properties in the EIS results. The improved GCE showed high selectivity, sensitivity 1.452 µA.nM-1.cm-2 to the detection of lead (II) cation, and a limitation of detection (LOD) 0.027 nM.

کلیدواژه‌ها [English]

  • Lead Cation
  • Modified Electrode
  • Nanoparticles
  • Micro Tube
  • Voltammetry
  • Fe3O4/Polyaniline
[1] J. aBriffa, E. Sinagra, R. Blunde Heavy metal pollution in the environment and their toxicological effects on humansm, heliyon, 6 (2020) e04691 https:// doi.org/10.1016/j.heliyon.2020.e04691
[2] M. Durkalec, J. Szkoda, R. Kolacz, S. Opalinski, A. Nawrocka, J. Zmudzki, Bioaccumulation of Lead, Cadmium and Mercury in Roe Deer and Wild Boars from Areas with Different Levels of Toxic Metal Pollution, International Journal of Environmental Research 9 (2006) 205-212.  https://doi: 10.22059/ijer.2015.890
[3] S.A. Asher, A.C. Sharma, A.V. Goponenko, M.M. Ward, Photonic crystal aqueous metal cation sensing materials, Analytical Chemistry 75 (2003)1676-.1681 https://doi: 10.1021/ac026328n
[4] C.F. Harrington, R. Clough, L.R. Drennan-Harris, S.J. Hill, J.F. Tyson, Atomic spectrometry update. Elemental speciation, Journal of Analytical Atomic Spectrometry 26 (2011) 1561-1595. https://doi.org/10.1039/C1JA90030G
 [5] Y. Zhang, S.B. Adeloju, Coupling of non-selective adsorption with selective elution for novel in-line separation and detection of cadmium by vapour generation atomic absorption spectrometry, Talanta, 137 (2015) 148-157. https://doi:10.1016/j.talanta.2015.01.025

[6] D. Arunbabu, A. Sannigrahi, T. Jana, Photonic crystal hydrogel material for the sensing of toxic mercury ions (Hg2+) in water, Soft Matter., 7 (2011) 2592-2599. https://doi.org/10.1039/C0SM01136C

[7] W. Hong, W.Li, X. Hu, B. Zhao, F. Zhang, D. Zhang, Highly sensitive colorimetric sensing for heavy metal ions by strong polyelectrolyte photonic hydrogels, Journal of Materials Chemistry 21 (2011) 17193-17201. https://doi.org/10.1039/C1JM12785C
[8] Z. Cai, J.T. Zhang, F. Xue, Z. Hong, D. Punihaole, S.A. Asher, 2D Photonic Crystal Protein Hydrogel Coulometer for Sensing Serum Albumin Ligand Binding, Analytical Chemistry 86 (2014) 4840-4847. https://doi.org/10.1021/ac404134t
[9] E.A. Hutton, J.T. van Elteren, B. Ogorevc, M.R. Smyth, Validation of bismuth film electrode for determination of cobalt and cadmium in soil extracts using ICP-MS. Talanta, 63 (2004) 849-855. https://doi: 10.1016/j.talanta.2003.12.038
[10] Y. Bonil, M. Brand , E. Kirowa-Eisner, , Determination of sub-mg l-1 concentrations of copper by anodic stripping voltammetry at the gold electrode, Analytica Chimica Acta 387 (1999) 85-95.
[11] Y. Bonfil, M. Brand, E. Kirowa-Eisner, Characteristics of subtractive anodic stripping voltammetry of Pb and Cd at devices and electrodes, Journal of Power Sources 196 (2011) 1–12 https://doi:10.1016/j.jpowsour.2010.06.084
[12] M. Brand, I. Eshkenazi, E. Kirowa-Eisner, The Silver Electrode in Square-Wave Anodic Stripping Voltammetry. Determination of Pb2+ without Removal of Oxygen, Analytical Chemistry 69 (1997) 4660-4664. https://doi.org/10.1021/ac970420f.
[13] E. Kirowa-Eisner, M. Brand, D. Tzur, Determination of sub-nanomolar concentrations of lead by anodic-stripping voltammetry at the silver electrode, Analytica Chimica Acta 385 (1999) 325-335.   https://doi.org/10.1016/S0003-2670 (98) 00663-1
[14] Y. Yang, Y. You, Y. Liu, Z. Yang, A lead (II) sensor based on a glassy carbon electrode modified with Fe3O4 nanospheres and carbon nanotubes, Microchim. Acta, 180 (2013) 379-385. 10.1007/s00604-013-0940-8  
[15] M.R. Mahmoudian, Y. Alias, W.J. Basirun, Pei Meng Woi, M. Sookhakian, Farid Jamali-Sheini, Synthesis and characterization of Fe3O4 rose like and spherical/reduced graphene oxide nanosheet composites for lead (II) sensor, Electrochim. Acta, 169 (2015) 126-133. https://doi.org/10.1016/j.electacta.2015.04.050
[17] G. Chang, Y. Luo, W. Lu, X. Qin, A.M. Asiri, A.O. Al-Youbi, X. Sun, Ag@poly(m-phenylenediamine)-Ag core-shell nanoparticles: One-step preparation, characterization, and their application for H2O2 detection, Catalysis Science & Technology 1 (2011) 1393. https://doi: 10.1039/C1CY00212K
[18] H.N. Lim, N.M. Huang, S.S. Lim, I. Harrison, C.H. Chia, Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth, International Journal of Nanomedicine 6 (2011) 1817-1823.  https://doi: 10.2147/IJN.S23392..
[19] M.R. Mahmoudian, W. Jefrey Basirun, M. Sookhakian, Pei Meng Woi, Erfan Zalnezhad, Hassan Hazarkhani, Yatimah Alias, Synthesis and characterization of α-Fe2O3/polyaniline nanotube composite as electrochemical sensor for uric acid detection, Advanced Powder Technology 30 (2019) 384-392. https://doi.org/10.1016/j.apt.2018.11.015
[20] M.R. Mahmoudian, W.J. Basirun, P.M. Woi, H. Hazarkhani, Y.B. Alias, Voltammetric sensing of formaldehyde by using a nanocomposite prepared by reductive deposition of palladium and platinum on polypyrrole-coated nitrogen-doped reduced graphene oxide, Microchimica Acta 6 (2019) 4764-4776. https://doi.org/10.1007/s00604-019-3481-y
[21] S.Y. Park, M.S. Cho, H.J. Choi, Synthesis and electrical characteristics of polyaniline nanoparticles and their polymeric composite, Current Applied Physics 4 (2004) 581–583. https://doi.org/10.1016/j.cap.2004.01.020
[22] C. Xiang, Y. Zou, L.X. Sun, F. Xu, Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles–chitosan–carbon nanotubesmodified electrode, Talanta, 74 (2007) 206–211.     https://DOI: 10.1016/j.talanta.2007.05.050
[23] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, Journal of Power Sources 196 (2011) 1–12 https://doi:10.1016/j.jpowsour.2010.06.084
[24] I. Krull, M. Swartz, Determining limits of detection and quantitation, LC–GC 16 (1998) 922-924.
[25] Y. Kong, T. Wu, D. Wu, Y. Zhang, Y. Wang, B. Du , Q. Wei , An electrochemical sensor based on Fe3O4@PANI nanocomposites for sensitive detection of Pb2+ and Cd2+, Analytical Methods 10 (2018) 4784-4792. https://doi.org/10.1039/C8AY01245H
[26] Y. Pu, Y. Wu, Z. Yu, L. Lu, X. Wang, Simultaneous determination of Cd2+ and Pb2+ by an electrochemical sensor based on Fe3O4/Bi2O3/C3N4
nanocomposites, Talanta Open, 3 (2021) 100024. https://doi.org/10.1016/j.talo.2020.100024
[27] L. Wang, T. Lei, Z. Ren, X. Jiang, X. Yang, H. Bai, S. Wang, Fe3O4@PDA@MnO2 core-shell nanocomposites for sensitive electrochemical detection of trace Pb(II) in water, Journal of Electroanalytical Chemistry  864 (2020) 114065 https://doi.org/10.1016/j.jelechem.2020.114065
[28] P. Dai, Z. Yang, Sensor for lead (II) ion based on a glassy carbon electrode modified with double-stranded DNA and ferric oxide nanoparticles Microchimica Acta 176 (2012) 109-115. https://doi.org/10.1007/s00604-011-0702-4
[29] S. Anandhakumar, J. Mathiyarasu, Detection of lead (II) using an glassy carbon electrode modified with Nafion, carbon nanotubes and benzo-18-crown-6. Microchimica Acta, 180 (2013) 1065–1071. https:// doi.org/10.1007/s00604-013-1022-7
[30] M.R. Mahmoudian, Y. Alias, W.J. Basirun, P.M. Woi, S. Baradaran, M. Sookhakian, Synthesis, characterization, and sensing applications of polypyrrole coated Fe3O4 nanostrip bundles, Ceramics International 40 (2014) 9265-9272. https://doi:10.1016/j.ceramint.2014.01.148
[31] G. Yang, X. Qu, M. Shen, C. Wang, Q. Qu, X. Hu Electrochemical behavior of lead(II) at poly(phenol red) modified glassy carbon electrode, and its trace determination by differential pulse anodic stripping voltammetry, Microchimica Acta, 160 (2008) 275-281. https://doi.org/10.1007/s00604-007-0881-1
[32] T. Lou, D. Pan, Y. Wang, L. Jiang, W. Qin, Carbon Nanotubes/Ionophore Modified Electrode for Anodic Stripping Determination of Lead, Analytical Letters 44 (2015) 1746-1759. https://doi.org/10.1080/00032719.2010.526272
[33] X.-G. Li, X.-L. Ma, M.-R. Huang, Lead (II) ion-selective electrode based on polyaminoanthraquinone particles with intrinsic conductivity, Talanta 78 (2009) 498-505 https://doi.org/10.1016/j.talanta.2008.11.045.
[34] T. Xu, H. Dai, Y. Jin, Electrochemical sensing of lead(II) by differential pulse voltammetry using conductive polypyrrole nanoparticles. Microchimica Acta 23 (2020)1-7. https://doi.org/10.1007/s00604-019-4027-z
[35] L.D. Nguyen, T.C.D. Doan, T.M. Huynh, V.N.P. Nguyen, H.H. Dinh, D.M. ThiDang, C.M. Dang, An electrochemical sensor based on polyvinyl alcohol/chitosan-thermally reduced graphene composite modified glassy carbon electrode for sensitive voltammetric detection of lead, Sensors & Actuators, B: Chemical 347 (2021) 130443. https://doi.org/10.1016/j.snb.2021.130443