Synthesis and characterization of Fe3O4/Polyaniline microtube composite as electrochemical sensor for Lead (II) detection

Document Type : Full length research Paper

Author

Department of Chemistry, Faculty of Science University of Farhangian, Tehran, Iran

Abstract

In the present study, Fe3O4/polyaniline micro-tube nanocomposite (Fe3O4/PAn MT-NCs) was synthesized and used as a sensitive material for the detection of lead (II) cation to enhance the performance of glassy carbon electrode (GCE). The results of the scanning electron microscope (SEM) and X-Ray diffraction (XRD) confirmed the morphology of PAn MTs and the presence of Fe3O4 nanoparticles respectively. The electrochemical impedance spectroscopy (EIS) results showed a decrease in the electron transfer resistance in the Fe3O4/PAn MT-NCs/GCE due to the presence of PAn MTs. The increase in the available surface area of the Fe3O4 / PAn MT-NCs/GCE in comparison with bare GCE was confirmed by the increase of the capacitive properties in the EIS results. The improved GCE showed high selectivity, sensitivity 1.452 µA.nM-1.cm-2 to the detection of lead (II) cation, and a limitation of detection (LOD) 0.027 nM.

Keywords

Main Subjects


[1] J. aBriffa, E. Sinagra, R. Blunde Heavy metal pollution in the environment and their toxicological effects on humansm, heliyon, 6 (2020) e04691 https:// doi.org/10.1016/j.heliyon.2020.e04691
[2] M. Durkalec, J. Szkoda, R. Kolacz, S. Opalinski, A. Nawrocka, J. Zmudzki, Bioaccumulation of Lead, Cadmium and Mercury in Roe Deer and Wild Boars from Areas with Different Levels of Toxic Metal Pollution, International Journal of Environmental Research 9 (2006) 205-212.  https://doi: 10.22059/ijer.2015.890
[3] S.A. Asher, A.C. Sharma, A.V. Goponenko, M.M. Ward, Photonic crystal aqueous metal cation sensing materials, Analytical Chemistry 75 (2003)1676-.1681 https://doi: 10.1021/ac026328n
[4] C.F. Harrington, R. Clough, L.R. Drennan-Harris, S.J. Hill, J.F. Tyson, Atomic spectrometry update. Elemental speciation, Journal of Analytical Atomic Spectrometry 26 (2011) 1561-1595. https://doi.org/10.1039/C1JA90030G
 [5] Y. Zhang, S.B. Adeloju, Coupling of non-selective adsorption with selective elution for novel in-line separation and detection of cadmium by vapour generation atomic absorption spectrometry, Talanta, 137 (2015) 148-157. https://doi:10.1016/j.talanta.2015.01.025

[6] D. Arunbabu, A. Sannigrahi, T. Jana, Photonic crystal hydrogel material for the sensing of toxic mercury ions (Hg2+) in water, Soft Matter., 7 (2011) 2592-2599. https://doi.org/10.1039/C0SM01136C

[7] W. Hong, W.Li, X. Hu, B. Zhao, F. Zhang, D. Zhang, Highly sensitive colorimetric sensing for heavy metal ions by strong polyelectrolyte photonic hydrogels, Journal of Materials Chemistry 21 (2011) 17193-17201. https://doi.org/10.1039/C1JM12785C
[8] Z. Cai, J.T. Zhang, F. Xue, Z. Hong, D. Punihaole, S.A. Asher, 2D Photonic Crystal Protein Hydrogel Coulometer for Sensing Serum Albumin Ligand Binding, Analytical Chemistry 86 (2014) 4840-4847. https://doi.org/10.1021/ac404134t
[9] E.A. Hutton, J.T. van Elteren, B. Ogorevc, M.R. Smyth, Validation of bismuth film electrode for determination of cobalt and cadmium in soil extracts using ICP-MS. Talanta, 63 (2004) 849-855. https://doi: 10.1016/j.talanta.2003.12.038
[10] Y. Bonil, M. Brand , E. Kirowa-Eisner, , Determination of sub-mg l-1 concentrations of copper by anodic stripping voltammetry at the gold electrode, Analytica Chimica Acta 387 (1999) 85-95.
[11] Y. Bonfil, M. Brand, E. Kirowa-Eisner, Characteristics of subtractive anodic stripping voltammetry of Pb and Cd at devices and electrodes, Journal of Power Sources 196 (2011) 1–12 https://doi:10.1016/j.jpowsour.2010.06.084
[12] M. Brand, I. Eshkenazi, E. Kirowa-Eisner, The Silver Electrode in Square-Wave Anodic Stripping Voltammetry. Determination of Pb2+ without Removal of Oxygen, Analytical Chemistry 69 (1997) 4660-4664. https://doi.org/10.1021/ac970420f.
[13] E. Kirowa-Eisner, M. Brand, D. Tzur, Determination of sub-nanomolar concentrations of lead by anodic-stripping voltammetry at the silver electrode, Analytica Chimica Acta 385 (1999) 325-335.   https://doi.org/10.1016/S0003-2670 (98) 00663-1
[14] Y. Yang, Y. You, Y. Liu, Z. Yang, A lead (II) sensor based on a glassy carbon electrode modified with Fe3O4 nanospheres and carbon nanotubes, Microchim. Acta, 180 (2013) 379-385. 10.1007/s00604-013-0940-8  
[15] M.R. Mahmoudian, Y. Alias, W.J. Basirun, Pei Meng Woi, M. Sookhakian, Farid Jamali-Sheini, Synthesis and characterization of Fe3O4 rose like and spherical/reduced graphene oxide nanosheet composites for lead (II) sensor, Electrochim. Acta, 169 (2015) 126-133. https://doi.org/10.1016/j.electacta.2015.04.050
[17] G. Chang, Y. Luo, W. Lu, X. Qin, A.M. Asiri, A.O. Al-Youbi, X. Sun, Ag@poly(m-phenylenediamine)-Ag core-shell nanoparticles: One-step preparation, characterization, and their application for H2O2 detection, Catalysis Science & Technology 1 (2011) 1393. https://doi: 10.1039/C1CY00212K
[18] H.N. Lim, N.M. Huang, S.S. Lim, I. Harrison, C.H. Chia, Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth, International Journal of Nanomedicine 6 (2011) 1817-1823.  https://doi: 10.2147/IJN.S23392..
[19] M.R. Mahmoudian, W. Jefrey Basirun, M. Sookhakian, Pei Meng Woi, Erfan Zalnezhad, Hassan Hazarkhani, Yatimah Alias, Synthesis and characterization of α-Fe2O3/polyaniline nanotube composite as electrochemical sensor for uric acid detection, Advanced Powder Technology 30 (2019) 384-392. https://doi.org/10.1016/j.apt.2018.11.015
[20] M.R. Mahmoudian, W.J. Basirun, P.M. Woi, H. Hazarkhani, Y.B. Alias, Voltammetric sensing of formaldehyde by using a nanocomposite prepared by reductive deposition of palladium and platinum on polypyrrole-coated nitrogen-doped reduced graphene oxide, Microchimica Acta 6 (2019) 4764-4776. https://doi.org/10.1007/s00604-019-3481-y
[21] S.Y. Park, M.S. Cho, H.J. Choi, Synthesis and electrical characteristics of polyaniline nanoparticles and their polymeric composite, Current Applied Physics 4 (2004) 581–583. https://doi.org/10.1016/j.cap.2004.01.020
[22] C. Xiang, Y. Zou, L.X. Sun, F. Xu, Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles–chitosan–carbon nanotubesmodified electrode, Talanta, 74 (2007) 206–211.     https://DOI: 10.1016/j.talanta.2007.05.050
[23] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, Journal of Power Sources 196 (2011) 1–12 https://doi:10.1016/j.jpowsour.2010.06.084
[24] I. Krull, M. Swartz, Determining limits of detection and quantitation, LC–GC 16 (1998) 922-924.
[25] Y. Kong, T. Wu, D. Wu, Y. Zhang, Y. Wang, B. Du , Q. Wei , An electrochemical sensor based on Fe3O4@PANI nanocomposites for sensitive detection of Pb2+ and Cd2+, Analytical Methods 10 (2018) 4784-4792. https://doi.org/10.1039/C8AY01245H
[26] Y. Pu, Y. Wu, Z. Yu, L. Lu, X. Wang, Simultaneous determination of Cd2+ and Pb2+ by an electrochemical sensor based on Fe3O4/Bi2O3/C3N4
nanocomposites, Talanta Open, 3 (2021) 100024. https://doi.org/10.1016/j.talo.2020.100024
[27] L. Wang, T. Lei, Z. Ren, X. Jiang, X. Yang, H. Bai, S. Wang, Fe3O4@PDA@MnO2 core-shell nanocomposites for sensitive electrochemical detection of trace Pb(II) in water, Journal of Electroanalytical Chemistry  864 (2020) 114065 https://doi.org/10.1016/j.jelechem.2020.114065
[28] P. Dai, Z. Yang, Sensor for lead (II) ion based on a glassy carbon electrode modified with double-stranded DNA and ferric oxide nanoparticles Microchimica Acta 176 (2012) 109-115. https://doi.org/10.1007/s00604-011-0702-4
[29] S. Anandhakumar, J. Mathiyarasu, Detection of lead (II) using an glassy carbon electrode modified with Nafion, carbon nanotubes and benzo-18-crown-6. Microchimica Acta, 180 (2013) 1065–1071. https:// doi.org/10.1007/s00604-013-1022-7
[30] M.R. Mahmoudian, Y. Alias, W.J. Basirun, P.M. Woi, S. Baradaran, M. Sookhakian, Synthesis, characterization, and sensing applications of polypyrrole coated Fe3O4 nanostrip bundles, Ceramics International 40 (2014) 9265-9272. https://doi:10.1016/j.ceramint.2014.01.148
[31] G. Yang, X. Qu, M. Shen, C. Wang, Q. Qu, X. Hu Electrochemical behavior of lead(II) at poly(phenol red) modified glassy carbon electrode, and its trace determination by differential pulse anodic stripping voltammetry, Microchimica Acta, 160 (2008) 275-281. https://doi.org/10.1007/s00604-007-0881-1
[32] T. Lou, D. Pan, Y. Wang, L. Jiang, W. Qin, Carbon Nanotubes/Ionophore Modified Electrode for Anodic Stripping Determination of Lead, Analytical Letters 44 (2015) 1746-1759. https://doi.org/10.1080/00032719.2010.526272
[33] X.-G. Li, X.-L. Ma, M.-R. Huang, Lead (II) ion-selective electrode based on polyaminoanthraquinone particles with intrinsic conductivity, Talanta 78 (2009) 498-505 https://doi.org/10.1016/j.talanta.2008.11.045.
[34] T. Xu, H. Dai, Y. Jin, Electrochemical sensing of lead(II) by differential pulse voltammetry using conductive polypyrrole nanoparticles. Microchimica Acta 23 (2020)1-7. https://doi.org/10.1007/s00604-019-4027-z
[35] L.D. Nguyen, T.C.D. Doan, T.M. Huynh, V.N.P. Nguyen, H.H. Dinh, D.M. ThiDang, C.M. Dang, An electrochemical sensor based on polyvinyl alcohol/chitosan-thermally reduced graphene composite modified glassy carbon electrode for sensitive voltammetric detection of lead, Sensors & Actuators, B: Chemical 347 (2021) 130443. https://doi.org/10.1016/j.snb.2021.130443