[2] Li. Lika, G.J. Ye, V. Tran, R. Fei, G. Chen, H. Wang, J. Wang, et al., Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films,
Nature nanotechnology 10 (2015) 608-613.
https://doi.org/10.1038/nnano.2015.91.
[5] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility,
ACS nano 8 (2014) 4033-4041.
https://doi.org/10.1021/nn501226z.
[6] S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, A. Roelofs, Tunable transport gap in phosphorene,
Nano letters 14 (2014) 5733-5739.
https://doi.org/10.1021/nl5025535.
[7] R. Fei, L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus,
Nano letters 14 (2014) 2884-2889.
https://doi.org/10.1021/nl500935z.
[8] O. Lehtinen, J. Kotakoski, A.V. Krasheninnikov, A. Tolvanen, K. Nordlund, J. Keinonen, Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation,
Physical review B 81 (2010) 153401.
https://doi.org/10.1103/PhysRevB.81.153401.
[9] Y. Zhang, F. Hao, H. Xiao, C. Liu, X. Shi, X. Chen, Hydrogen separation by porous phosphorene: A periodical DFT study,
International Journal of Hydrogen Energy 41 (2016) 23067-23074.
https://doi.org/10.1016/j.ijhydene.2016.10.108.
[10] A. Hashmi, M.U. Farooq, J. Hong, Long-range magnetic ordering and switching of magnetic state by electric field in porous phosphorene,
The Journal of Physical Chemistry Letters 7 (2016) 647-652.
https://doi.org/10.1021/acs.jpclett.5b02600.
[12] D.S. Markovic, D. Zivkovic, D. Cvetkovic, R. Popovic, Impact of nanotechnology advances in ICT on sustainability and energy efficiency,
Renewable and Sustainable Energy Reviews 16 (2012) 2966-2972.
https://doi.org/10.1016/j.rser.2012.02.018.
[13] N. Salami, A. Shokri, Geometrical effects on the thermoelectric properties of single/bilayer graphene junctions
, Journal of Research on Many-body Systems 10 (2021) 35-46.
https://doi.org/10.22055/JRMBS.2020.16179.
[14] H. Khalatbari, Impact of increasing the number of molecules in thermopower properties of C20 molecule,
Journal of Research on Many-body Systems 7 (2018) 97-103.
http://doi.org/10.22055/JRMBS.2018.13938.
[15] M. Ilkhani, Half-metallic behavior, thermodynamic stability and thermoelectric performance of new CoXMnSi (X=Rh, Tc) quaternary Heuslers,
Journal of Research on Many-body Systems 11 (2021) 13-27.
http://doi.org/ 10.22055/JRMBS.2021.17055.
[16] R. Panahinia, S. Behnia, The study of thermoelectric effect on the nonlinear response regime: the appearance of negative differential thermoelectric resistance and thermoelectric rectifier in DNA,
Journal of Research on Many-body Systems 9 (2020), 13-24.
https://doi.org/10.22055/JRMBS.2019.14915.
[17] R. Santos, S.A. Yamini, S.X. Dou, Recent progress in magnesium-based thermoelectric materials.
Journal of Materials Chemistry A 6 (2018) 3328-3341.
https://doi.org/10.1039/C7TA10415D.
[18] S. Leblanc, Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications,
Sustainable Materials and Technologies 1 (2014) 26-35.
https://doi.org/10.1016/j.susmat.2014.11.002.
[19] H.Y. Lv, W.J. Lu, D.F. Shao, Y.P. Sun, Large thermoelectric power factors in black phosphorus and phosphorene. arXiv preprint arXiv:1404.5171(2014).
[20] R. Fei, A. Faghaninia, R. Soklaski, J.A. Yan, C. Lo, L. Yang, Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductance in phosphorene,
Nano letters 14 (2014) 6393-6399.
https://doi.org/10.1021/nl502865s.