Azimuthal magnetic field generated by twisted neutrino

Document Type : Full length research Paper

Authors

1 Department of physics, Shahid Bahonar university of Kerman, Kerman, Iran

2 Department of Physics, Shahid Bahonar university of Kerman, Kerman, Iran

Abstract

The interaction of the electron-neutrino beam with the plasma in the universe is an important and appropriate process to obtain the amount of magnetic field in the plasma. In this study, the azimuthal magnetic field generated by electron-neutrino with orbital angular momentum is presented. Laguerre Gaussian neutrino transferring through a dense plasma could  produce a magnetic field. The origin of the magnetic field that existed at the beginning of the universe is unknown. This method is one of the candidates for magnetic field generation in the early universe. Using this interaction for supernova explosion produced good results. The azimuthal magnetic field is calculated up to 107 Gauss by this model.

Keywords

Main Subjects


[1] P. Shukla, L. Silva, H. Bethe, R. Bingham, J. Dawson, The physics of collective neutrino-plasma interactions, Plasma physics and controlled fusion 41 3A (1999), 699. https://doi.org/10.1088/0741-3335/41/3A/063
[2] V. Tsytovich, Generation and Acceleration of Neutrinos in a Turbulent Plasma, Soviet Physics Doklady 9 (1965)
[3] Serbeto, A., et al. Excitation of strong wakefields by intense neutrino bursts in a magnetized electron-positron plasma, Journal of Experimental and Theoretical Physics 99 3 (2004): 466-473. https://doi.org/10.1134/1.1809673
[4] Haas, Fernando, Kellen Alves Pascoal, and José Tito Mendonça. Neutrino-driven electrostatic instabilities in a magnetized plasma, Physical Review D 96 2 (2017): 023018. https://doi.org/10.1103/PhysRevD.96.023018
[5] H. Bethe, Possible explanation of the solar-neutrino puzzle, Physical Review Letters, 56 12 (1986) 1305. https://doi.org/10.1103/PhysRevLett.56.1305
[6] Elze, Hans-Thomas, Takeshi Kodama, and Reuven Opher. Collective modes in neutrino “beam” electron-positron plasma interactions, Physical Review D 63 1 (2000): 013008. https://doi.org/10.1103/PhysRevD.63.013008
[7] Silva, L. O., et al. Neutrino kinetics in dense astrophysical plasmas, The Astrophysical Journal Supplement Series 127 2 (2000): 481. https://doi.org/10.1086/313335
[8] L. Silva, R. Bingham, J. Dawson, W. Mori, Ponderomotive force of quasiparticles in a plasma, Physical Review E, 59 2 (1999), 2273. https://doi.org/10.1103/PhysRevE.59.2273
[9] Silva, L. O., et al. Ponderomotive force of neutrinos in a magnetized plasma, Physica Scripta 2000. T 84 (2000): 57. https://doi.org/10.1238/Physica.Topical.084a00057
[10] L. Silva, R. Bingham, J. Dawson and J. Mendonca, Collective neutrino–plasma interactions, Physics of Plasmas, 7 5 (2000),2166-2172. https://doi.org/10.1063/1.874037
[11] P. Shukla, L. Stenflo, R. Bingham, H. Bethe, J. Dawson, J. Mendonca, Generation of magnetic fields by nonuniform neutrino beams, Physics Letters A 233 3 (1997) 181-183. https://doi.org/10.1016/S0375-9601(97)00450-7
[12] P. Shukla and L. Stenflo, "Intense magnetic fields produced by neutrino beams in supernovae," Physical Review E, 58 2 (1998), 2479. https://doi.org/10.1103/PhysRevE.57.2479
[13] J.T. Mendonca, B. Thide, Neutrino orbital angular momentum in a plasma vortex., EPL (Europhysics Letters) 84 4 (2008), 41001. https://doi.org/10.1209/0295-5075/84/41001
[14] S. Ali, J. Davies, J. Mendonca, Magnetic field generation with Laguerre- Gauss laser beam, ( 2010).
[15] S. Ali, J. Mendonca, Inverse Faraday effect with plasmon beams, Plasma Physics and Controlled Fusion, 53 4 (2011) 045007. https://doi.org/10.1088/0741-3335/53/4/045007
[16] R. Bingham, H. Bethe, J. Dawson, P. Shukla, J. Su, Nonlinear scattering of neutrinos by plasma waves: a ponderomotive force description., Physics Letters A 220 1-3 (1996) 107-110. https://doi.org/10.1016/0375-9601(96)00503-8