انتقال گرما در نانوکامپوزیت‌های پلی‌اتیلن: رویکردی چند مقیاسی

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک، دانشگاه زنجان، زنجان، ایران

2 گروه مهندسی مکانیک، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران

چکیده

در این مقاله، ما با استفاده از رهیافت شبیه سازی دینامیک مولکولی غیرتعادلی و روش تقریب میانگین، تأثیر نانو پرکننده ی گرافین به عنوان تقویت کننده را بر رسانندگی گرمایی موثر نانوکامپوزیت برپایة پلی اتیلن بررسی می کنیم. طبق نتایج ما، رسانندگی گرمایی پلی اتیلن در دمای اتاق با استفاده از پتانسیل بین اتمی ایربو، تقریبا W/m.K 21/0 به دست آمد. این پژوهش نشان می دهد با افزایش کسر حجمی نانو پرکنندة گرافین، رسانندگی گرمایی موثر نانوکامپوزیت افزایش می یابد. همچنین مشاهده کردیم که با افزایش کسر حجمی گرافین از 1% به 3% رسانندگی گرمایی موثر نانوکامپوزیت نزدیک به 55% افزایش می یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Heat transfer in polyethylene nanocomposites: A multiscale approach

نویسندگان [English]

  • Leila Razzaghia 1
  • Farhad Khoeini 1
  • Maryam Khalkhali 1
  • Ali Rajabpour 2
1 Department of Physics, University of Zanjan, Zanjan, 45195-313, Iran
2 Advanced Simulation and Computing Lab. (ASCL), Mechanical Engineering Department, Imam Khomeini International University, Qazvin, 34148–96818, Iran
چکیده [English]

In this paper, using the non-equilibrium molecular dynamics (NEMD) simulation approach, and the effective medium approximation (EMA) method, we investigate the effect of graphene nanoscale filler, as an enhancer, on the effective thermal conductivity of polyethylene-based nanocomposites. Our results suggest that the thermal conductivity of polyethylene at room temperature was estimated to be nearly 0.21 W/m.K, through using the reactive bond order (AIREBO) interatomic potential. This study shows that by increasing the volume fraction of graphene nanofillers, the effective thermal conductivity of the nanocomposite increases. We also observed that by increasing the volume fraction of graphene from 1% to 3%, the normalized thermal conductivity of nanocomposite increases to nearly 55%..

کلیدواژه‌ها [English]

  • Polyethylene nanocomposites
  • Thermal conductivity
  • Multiscale modeling
  • Graphene
  • Molecular dynamics
[1] W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid Nanorod-Polymer Solar Cells, Science 80 (2002) 2425-2427. DOI: 10.1126/science.1069156
[2] J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A.J. Heeger, Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing, Science 317 (2007) 222-225.  DOI: 10.1126/science.1141711
 
[3] D. Zhang, K. Zhang, Y. Wang, Y. Wang, Y. Yang, Thermoelectric Effect Induced Electricity in Stretchable Graphene-Polymer Nanocomposites for Ultrasensitive Self-Powered Strain Sensor System, Nano Energy 56 (2019) 25-32. https://doi.org/10.1016/j.nanoen.2018.11.026
[4] S.N. Patel, A.M. Glaudell, K.A. Peterson, E.M. Thomas, K.A. O’Hara, E. Lim, M.L. Chabinyc, Morphology Controls the Thermoelectric Power Factor of a Doped Semiconducting Polymer, Science 3 (2017) 1700434. DOI: 10.1126/sciadv.1700434
[5] J. Yan, A. Downey, A. Chen, S. Laflamme, S. Hassan, Capacitance-Based Sensor with Layered Carbon-Fiber Reinforced Polymer and Titania-Filled Epoxy, Composite Structures 227 (2019) 111247.        https://doi.org/10.1016/j.compstruct.2019.111247
[6] C. Tuloup, W. Harizi, Z. Aboura, Y. Meyer, K. Khellil, R. Lachat, On the Use of In-Situ Piezoelectric Sensors for the Manufacturing and Structural Health Monitoring of Polymer-Matrix Composites, A Literature Review, Composite Structures 215 (2019) 127-149. https://doi.org/10.1016/j.compstruct.2019.02.046
[7] A.B. Puthirath, A. Baburaj, K. Kato, D. Salpekar, N. Chakingal, Y. Cao, G. Babu, P.M. Ajayan, High Sulfur Content Multifunctional Conducting Polymer Composite Electrodes for Stable Li-S Battery, Electrochimica Acta 306 (2019) 489-497.         https://doi.org/10.1016/j.electacta.2019.03.136
[8] T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M.D. Hager, U.S. Schubert, An Aqueous, Polymer-Based Redox-Flow Battery Using Non-Corrosive, Safe, and Low-Cost Materials, Nature 527 (2015) 78-81. Doi:10.1038/nature18909.
[9] H. Yazdani, H. Ghasemi, C. Wallace, K. Hatami, Mechanical Properties of Carbon Nanotube‐filled Polyethylene Composites: A Molecular Dynamics Simulation Study, Polymer Composites 40 (2019) 1850-1861. Doi: org/10.1002/pc.25175.
[10] M. Hadipeykani, D. Toghraie, Thermomechanical Properties of the Polymeric Nanocomposite Predicted by Molecular Dynamics, ADMT Journal 12 (2019) 25-32. Doi://civilica.com/doc/1008336/.
[11] I. Bustero, I. Gaztelumendi, I. Obieta, M.A. Mendizabal, A. Zurutuza, A. Ortega, B. Alonso, Free-Standing Graphene Films Embedded in Epoxy Resin with Enhanced Thermal Properties, Advanced  Composites and Hybrid Materials 3 (2020) 31-40. 10.1007/s42114-020-00136-6.
[12] E.H.C. Ferreira, R.J.E. Andrade, G.J.M. Fechine, The Superlubricity State of Carbonaceous Fillers on Polyethylene-Based Composites in a Molten State, Macromolecules 52 (2019) 9620-9631. Doi:10.1021/acs.macromol.9b01746
[13] Z. Zhang, J. Ding, B.M. Ocko, J. Lhermitte, J. Strzalka, C.-H. Choi, F.T. Fisher, K.G. Yager, C.T. Black, Nanoconfinement and Salt Synergistically Suppress Crystallization in Polyethylene Oxide, Macromolecules 53 (2020) 1494-1501.  Doi:10.1021/acs.macromol.9b01725
[14] M. Wang, D. Galpaya, Z.B. Lai, Y. Xu, C. Yan, Surface Functionalization on the Thermal Conductivity of Graphene–Polymer Nanocomposites, International Journal of Smart and Nano Materials 5 (2014) 123-132. Doi:org/10.1080/19475411.2014.904828
[15] Y. Xiong, H. Wu, J. Gao, W. Chen, J. Zhang, Y. Yue, Toward Improved Thermal Conductance of Graphene-Polyethylene Composites via Surface Defect Engineering: A Molecular Dynamics Study, Acta Physico-Chimica Sinica 35 (2019) 1150. Doi: 10.3866/PKU.WHXB201901002
[16] M. Wang, N. Hu, L. Zhou, C. Yan, Enhanced Interfacial Thermal Transport across Graphene–Polymer Interfaces by Grafting Polymer Chains, Carbon 85 (2015) 414-421.         Doi:org/10.1016/j.carbon.2015.01.009
[17] H. Tafrishi, S. Sadeghzadeh, R. Ahmadi, F. Molaei, F. Yousefi, H. Hassanloo, Investigation of Tetracosane Thermal Transport in Presence of Graphene and Carbon Nanotube Fillers––A Molecular Dynamics Study, Journal of Energy Storage 29 (2020) 101321. Doi: 10.1016/j.est.2020.101321
[18] S. Mohammadi, M. Esmailpour, F. Khoeini, Investigation of Graphene and Silicene-DNA nanostructures: DNA Sensing, Journal of research on many-body system 10 (2020) 1-12. Doi: 10.22055/JRMBS.2020.15567
[19] F. Khoeini, L. Esmaeili, Effects of electric and magnetic fields on electronic properties of stanene nanoribbons, Journal of research on many-body system 2 (2019) 61-69.  Doi: 10.22055/JRMBS.2019.14835
[20] Q. Wang, B. Jiang, B. Li, Y. Yan, A Critical Review of Thermal Management Models and Solutions of Lithium-Ion Batteries for the Development of Pure Electric Vehicles, Renewable and Sustainable Energy Reviews 64 (2016) 106. Doi.org/10.1016/j.rser.2016.05.033
[21] T. Lu, K. Kim, X. Li, J. Zhou, G. Chen, J. Liu, Thermal Transport in Semicrystalline Polyethylene by Molecular Dynamics Simulation, Journal of Applied  Physics 123 (2018) 015107. Doi: org/10.1063/1.5006889
[22] J.S. Lewis, Z. Barani, A.S. Magana, F. Kargar, A.A. Balandin, Thermal and Electrical Conductivity Control in Hybrid Composites with Graphene and Boron Nitride Fillers, Materials Research Express 6 (2019) 085325. https://doi.org/10.1088/2053-1591/ab2215
[23] Y. Wang, C. Yang, Q.-X. Pei, Y. Zhang, Some Aspects of Thermal Transport across the Interface between Graphene and Epoxy in Nanocomposites, ACS Applied Materials Interfaces 8 (2016) 8272-8279. Doi: 10.1021/acsami.6b00325
[24]      Z. Rao, Q. Wang, and C. Huang, Investigation of the Thermal Performance of Phase Change Material/Mini-Channel Coupled Battery Thermal Management System, Applied Energy 164 (2016) 659-669. https://doi.org/10.1016/j.apenergy.2015.12.021
[25] C. Mahoney, C.M. Hui, S. Majumdar, Z. Wang, J.A. Malen, M.N. Tchoul, K. Matyjaszewski, M.R. Bockstaller, Enhancing Thermal Transport in Nanocomposites by Polymer-Graft Modification of Particle Fillers, Polymer 93 (2016) 72-77. Doi:10.1016/j.polymer.2016.04.014
[26] A. Kutvonen, G. Rossi, T. Ala-Nissila, Correlations between Mechanical, Structural, and Dynamical Properties of Polymer Nanocomposites, Physical Review E 85 (2012) 041803. Doi:10.1103/PhysRevE.85.041803
[27] N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, Review of Thermal Conductivity in Composites: Mechanisms, Parameters and Theory, Progress in Polymer Science 61 (2016) 1-28.           Doi:org/10.1016/j.progpolymsci.2016.05.001
[28] S. Pfaller, G. Possart, P. Steinmann, M. Rahimi, F. Müller-Plathe, M.C. Böhm, Investigation of Interphase Effects in Silica-Polystyrene Nanocomposites Based on a Hybrid Molecular-Dynamics–Finite-Element Simulation Framework, Physical Review E 93 (2016) 052505.          https://doi.org/10.1103/PhysRevE.93.052505
[29] A. Vahedi, M.H. Sadr Lahidjani, S. Shakhesi, Multiscale Modelling of Thermal Conductivity of Carbon Nanotube Paraffin Nanocomposites, Materials Research Express 5 (2018) 115026. Doi:10.1016/j.physb.2018.09.017 
 
[30] B. Mortazavi, O. Benzerara, H. Meyer, J. Bardon, S. Ahzi, Combined Molecular Dynamics-Finite Element Multiscale Modeling of Thermal Conduction in Graphene Epoxy Nanocomposites, Carbon  60 (2013) 356-365. Doi:10.1016/j.carbon.2013.04.048.
[31] B. Mortazavi, H. Yang, F. Mohebbi,        G. Cuniberti, and T. Rabczuk, Graphene or H-BN Paraffin Composite Structures for the Thermal Management of Li-Ion Batteries: A Multiscale Investigation, Applied Energy 202 (2017) 323-334. Doi.org/10.1016/j.apenergy.2017.05.175
[32] S. Melchionna, G. Ciccotti, B. Lee   Holian, Hoover NPT dynamics for systems varying in shape and size, Molecular Physics 78 (1993) 533-544. Doi: 10.1080/00268979300100371
[33] P. Kapitza, Heat transfer and superfluidity of helium, Physical Review 60 (1941) 354. Doi:https://doi.org/10.1103/PhysRev.60.354
[34] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of computational physics, 117 (1995) 1-19. Doi: doi.org/10.1006/jcph.1995.1039
[35] L. Razzaghi, M. Khalkhali, A. Rajabpour, F. Khoeini, Effect of graphene and carbon-nitride nanofillers on the thermal transport properties of polymer nanocomposites: A combined molecular dynamics and finite element study, Physical Review E 103  (2021) 013310. Doi:https://doi.org/10.1103/PhysRevE.103.013310
[36] L. Razzaghi, F. Khoeini, A. Rajabpour, M. Khalkhali, Thermal transport in two-dimensional C 3 N/C 2 N superlattices: A molecular dynamics approach, International Journal of Heat and Mass Transfer 177 (2021) 121561. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121561
[37] M. Khalkhali, A. Rajabpour, F. Khoeini, Thermal Transport across Grain Boundaries in Polycrystalline Silicene: A Multiscale Modeling, Scientific Reports 9 (2019) 5684. https://doi.org/10.1038/s41598-019-42187-w
[38] F. Yousefi, F. Khoeini, A. Rajabpour, Thermal Rectification and Interfacial Thermal Resistance in Hybrid Pillared-Graphene and Graphene: A Molecular Dynamics and Continuum Approach, Nanotechnology 31 (2020) 285707. Doi:https://doiorg/10.1088/1361-6528/ab8420
[39] W. Cain V.M. Shalaev, Optical metamaterials, Springer, (2010). Doi: https://www.springer.com/gp/book/9781441911506
[40] M. Wang, N. Pan, Predictions of effective physical properties of complex multiphase materials, Materials Science and Engineering: R: Reports 63 (2008) 1-30. Doi:.org/10.1016/j.mser.2008.07.001
[41] K. Bui, H.M. Duong, A. Striolo, D.V. Papavassiliou, Effective heat transfer properties of graphene sheet nanocomposites and comparison to carbon nanotube nanocomposites, The Journal of Physical Chemistry C 115 (2011) 3872-3880. Doi:10.1021/jp109978x
[42] M. Wang, D, Galpaya, Z.B. Lai, Y. Xu, C. Yan, Surface functionalization on the thermal conductivity of graphene–polymer nanocomposites, International Journal of Smart and Nano Materials 5 (2014) 123-132. Doi:doi.org/10.1080/19475411.2014.904828