[2] S.K. Pati, T. Enoki, C.N.R. Rao. Graphene and its Fascinating Attributes World Scientific Publishing Co. Pte. Ltd. (2011). https://doi.org/10.1142/7989
[4] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters 8 (2008) 902-907. https://doi.org/10.1021/nl0731872
[5] J.H. Seol, I. Jo, A.L. Moor, Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, et al., Two-Dimensional Phonon Transport in Supported Graphene, Science 328 (2010) 213-216. https://doi.org/10.1126/science.1184014
[8] W. Cai, A.L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, R.S. Ruoff, Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition, Nano Letters 10 (2010) 1645–1651. https://doi.org/10.1021/nl9041966
[11] A.J.H. McGaughey, M. Kaviany, Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation, Physical Review B 69 (2004) 094303 https://doi.org/10.1103/PhysRevB.69.094303
[13] P.K. Schelling, S.R. Phillpot, P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Physical Review B 65 (2002) 144306. https://doi.org/10.1103/PhysRevB.65.144306
[14] D.P. Sellan, E.S Landry, J.E. Turney, A.J.H. McGaughey, C.H. Amon, Size effects in molecular dynamics thermal conductivity predictions, Physical Review B 81 (2010) 214305. https://doi.org/10.1103/PhysRevB.81.214305
[15] A.J.C. Ladd, B. Moran, W.G. Hoover, Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics, Physical Review B 34 (1986) 5058. https://doi.org/10.1103/PhysRevB.34.5058
[16] A.S. Henry, G. Chen, Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics, Journal of Computational and Theoretical Nanoscience 5 (2008) 1-12. https://doi.org/10.1166/jctn.2008.2454
[17] J.V. Goicochea, M. Madrid, C.H. Amon, Thermal Properties for Bulk Silicon Based on the Determination of Relaxation Times Using Molecular Dynamics, Journal of Heat Transfer, 132 (2010) 012401. https://doi.org/10.1115/1.3211853
[18] A.A. Maradudin, A.E. Fein, Scattering of Neutrons by an Anharmonic Crystal, Physical Review 128 (1962) 2589.
[19] D.C. Wallace, Thermodynamics of Crystals. Cambridge, (1972).
[21] J.E. Turney, E.S. Landry, A.J.H. McGaughey, C.H. Amon, Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations, Physical Review B 79 (2009) 064301. https://doi.org/10.1103/PhysRevB.79.064301
[24] T. Feng, X. Ruan, Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons, Physical Review B 97 (2018) 045202. https://doi.org/10.1103/PhysRevB.97.045202
[25] E. Koukaras, G. Kalosakas, C. Galiotis, K. Papagelis, Phonon properties of graphene derived from molecular dynamics simulations, Scientific Reports 5 (2015) 12923. https:// doi.org/10.1038/srep12923
[26] R. Qiu, Reduction of spectral phonon relaxation times from suspended to supported graphene, Applied Physics Letters 100 (2012) 193101. https://doi.org/10.1063/1.4712041
[27] Z. Ji-Hang, X. Xin-Tong, C. Bing-Yang, Size-dependent mode contributions to the thermal transport of suspended and supported graphene, Applied Physics Letters 115 (2019) 123105. https://doi.org/10.1063/1.5115060
[28] C. Bing-Yang, Z. Ji-Hang, H. Guo-Jie, C. Gui-Xing, Enhanced thermal transport across multilayer graphene and water by interlayer functionalization, Applied Physics Letters 112 (2018) 041603. https://doi.org/10.1063/1.5018749
[29] Z. Ji-Hang, C. Bing-Yang, Phonon thermal properties of graphene on h-BN from molecular dynamics simulations, Applied Physics Letters 110 (2017) 103106. https://doi.org/10.1063/1.4978434
[30] Z. Ji-Hang, Y. Zhen-Qiang, C. Bing-Yang, Phonon thermal properties of graphene from molecular dynamics using different potentials, Journal of Chemical Physics 145 (2016) 134705. https://doi.org/10.1063/1.4963918
[31] S. Maruyuma, A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube, Nanoscale and Microscale Thermophysical Engineering 7 (2003) 41-50. https://doi.org/10.1080/10893950390150467
[32] J. Shiomi, S. Maruyama, Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations, Physical Review B 73 (2006) 205420. https://doi.org/10.1103/PhysRevB.73.205420
[33] N. de Koker, Thermal Conductivity of MgO Periclase from Equilibrium First Principles Molecular Dynamics, Physical Review Letters, 103, (2009) 125902. https://doi.org/10.1103/PhysRevLett.103.125902
[34] J.A. Thomas, J.E. Turney, R.M. Iutzi, C.H. Amon, A.J.H. McGaughey, Predicting phonon dispersion relations and lifetimes from the spectral energy density, Physical Review B 81 (2010) 081411. https://doi.org/10.1103/PhysRevB.81.081411
[35] P. Mukherjee, I. Kass, I. Arkin, M.T. Zanni, Picosecond dynamics of a membrane protein revealed by 2D IR, Proceedings of the National Academy of Sciences of the United States of America, 103 (2006) 8571. https://doi.org/10.1073/pnas.0508833103
[36] B. Qiu, L. Sun, X. Ruan, Lattice thermal conductivity reduction in Bi2Te3 quantum wires with smooth and rough surfaces: A molecular dynamics study, Physical Review B 83 (2011) 035312. https://doi.org/10.1103/PhysRevB.83.035312
[37] J.E. Turney, E.S. Landry, A.J.H. McGaughey, C.H. Amon, Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations, Physical Review B 79 (2009) 064301. https://doi.org/10.1103/PhysRevB.79.064301
[38] B. Qiu, H. Bao, G. Zhang, Y. Wu, X. Ruan, Molecular Dynamics Simulations of Lattice Thermal Conductivity and Spectral Phonon Mean Free Path of PbTe: Bulk and Nanostructures, Computational Materials Science 53 (2012) 278-285. https://doi.org/10.1016/j.commatsci.2011.08.016