تغییرات تابع توزیع ذرات در انبساط یک تیغه پلاسما به خلا

نوع مقاله : مقاله پژوهشی کامل

نویسنده

گروه فیزیک، دانشکده علوم پایه، دانشگاه بجنورد، بجنورد، ایران

چکیده

در این مقاله تغییرات تابع توزیع ذرات در فرایند انبساط یک پلاسمای یک بعدی بدون برخورد به خلأ مورد مطالعه قرار گرفته است. نشان داده شده است که برای حالتهای خود-مشابه توزیع ماکسولی اولیه یونها به تدریج به یک توزیع تک مقدار(δ گونه) سوق پیدا می‌کند. لذا می‌توان دینامیک یونها را با معادلات سیالی توصیف کرد. از طرفی برای اثرات جدایی بارکه با فرض انبساط یک پلاسمای محدود اتفاق می‌افتد، فرایند انبساط پلاسما تغییراتی را به تابع توزیع الکترونها تحمیل کرده و در نتیجه توزیع آنها به حالتهای غیر ماکسولی سوق پیدا می کند. برای بررسی تابع توزیع الکترونها در هر لحظه از شبیه سازی ذره ای استفاده شده است. در این شبیه سازی، دینامیک الکترونها بر اساس معادله ولاسف و دینامیک یونها بر اساس معادلات سیالی تعیین می‌شود. در انتها نشان داده شده است که دنباله های پرانرژی تابع توزیع الکترونها درمحل بدنه پلاسما به خاطر فرار الکترونهای پر انرژی به خلأ، پایین آمده و توزیع ذرات در این قسمت به یک حالت سوپر ماکسولی تبدیل می‌شود. از طرفی در ناحیه جبهه یونی که محل حضور الکترونهای پر انرژی است توزیع سرعت الکترونها از حالت ماکسولی به حالت لورنتزی همراه با دنباله های پر انرژی تبدیل شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Variation of particles distribution function in expansion of plasma slab into vacuum

نویسنده [English]

  • Reza Shokoohi
Department of physics, Faculty of sciences, University of Bojnord, Bojnord
چکیده [English]

In this paper, the variations of particles distribution function (DF) in a one-dimensional collisionless plasma expansion are studied. It is shown that, for the self-similar cases the initial Maxwellian distribution function of ions gradually converse to a δ-like one. So, the dynamic of the ions could be considered with fluid equations. On the other hand, for the effects of charge separation that occurs assuming the expansion of finite plasma, the process of plasma expansion imposes variations on electrons DF which causes it to change from Maxwellian to a non-Maxwellian one. In order to investigate the electrons DF at each moment, a particle simulation is used. In this simulation, the electrons dynamic is determined by Vlasov equation. Ions dynamic is given by fluids equations. Finally, it is indicated that, the higher energy tails of electrons DF in the main body of plasma are descended due to the motion of high energy electrons into vacuum and the electrons DF transforms to a super-Maxwellian DF. In the opposite side, at ion front zone which is the place of high energy electrons presence, electrons DF transform from Maxwellian to Lorentzian case with the high energy tails

کلیدواژه‌ها [English]

  • plasma expansion
  • simulation
  • ion front
  • self-similar
  • Vlasov equation
[1] YU.V. Medvedev, Ion front in an expanding collisionless plasma, Plasma Physics and Controlled Fusion. 53 (2011) 125007. http://doi.org/10.1088/07413335/53/12/125007.
[2] A. Diaw, P. Mora, Rarefaction shock in plasma with a bi-Maxwellian electron distribution function, Physical. Review E. 84 (2011) 036402. https://doi.org/10.1103/PhysRevE.84.036402
[3] A. Diaw, P. Mora, Thin-foil expansion into a vacuum with a two-temperature electron distribution function, Physical Review E. 86 (2012) 026403. https://doi.org/10.1103/PhysRevE.86.026403
[4] A.V. Gurevich, et all. self-similar motion of rarefied plasma, Soviet Physics JETP. 22, (1966) 449-454.
[5] T. Grismayer, P. Mora, J.C. Adam, A. Héron, Electron kinetic effects in plasma expansion and ion acceleration, Physical Review E. 77 (2008) 66407. https://doi.org/10.1063/1.862088
[6] R. Shokoohi, E. Mohammadi Razi, Self-similar expansion of non-Maxwellian plasmas with thermal ions, The European Physical Journal D 72 (2018) 189. https://doi.org/10.1140/epjd/e2018-80702-2
[7] R. Shokoohi, E. Mohammadi Razi, General self-similar solution for expansion of non-Maxwellian plasmas, Physica Scripta. 93 (2018) 95601. http://dx.doi.org/10.1088/1402-4896/aacbe2
[8] M. Borghesi, J. Fuchs, S.V. Bulanov, A.J. Mackinnon, P.K. Patel, M. Roth, Fast Ion Generation by High-Intensity Laser Irradiation of Solid Targets and Applications, Fusion Science and Technology. 49 (2006) 412. https:// doi.org/10.13182/FST06-A1159
 [9] J. Fuchs, P. Antici, E. D’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C.A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, P. Audebert, Laser-driven proton scaling laws and new paths towards energy increase, Nature Physics 2 (2006) 48-54. https://doi.org/10.1038/nphys199
[10] L. Robson, P.T. Simpson, R.J. Clarke, K.W.D. Ledingham, F. Lindau, O. Lundh, T. McCanny, P. Mora, D. Neely, C.-G. Wahlström, M. Zepf, P. McKenna, Scaling of proton acceleration driven by petawatt-laser–plasma interactions, Nature. Physics 3 (2007) 58. http://dx.doi.org/doi:10.1038/nphys476
[11] C. Thaury, P. Mora, A. Héron, J.C. Adam, Influence of the Weibel instability on the expansion of a plasma slab into a vacuum, Physical Review E 82 (2010) 016408. https://doi.org/10.1103/PhysRevE.82.026408
[12] P. Mora, Plasma Expansion into a Vacuum, Physical Review Letters 90 (2003)185002.   https://doi.org/10.1103/PhysRevLett.90.185002
[13] T. Grismayer, P. Mora, Influence of a finite initial ion density gradient on plasma expansion into a vacuum, Physics of Plasmas 13 (2006) 32103. https://doi.org/10.1063/1.2178653
[14] J.E. Crow, P.L. Auer, L.E. Allen, The expansion of a plasma into a vacuum, Journal of Plasma Physics 14 (1975) 65. https://doi.org/10.1017/S0022377800025538
 [15] D. Summers, R. Thorne, The modified plasma dispersion function, Physics of Fluids B: Plasma Physics 3 (1991) 1835. https://doi.org/10.1063/1.859653
[16] V.M. Vasyliunas, Low-energy electrons on the day side of the magnetosphere, Journal of Geophysical Research. 73 (1968) 2839.
[17] A. Hasegawa, K. Mima, M. Duong-van, Plasma distribution function in a superthermal radiation field, Physical Review Letters. 54 (1985) 2608. https://doi.org/10.1103/PhysRevLett.54.2608
[18] R. Shokoohi, H. Abbasi, Influence of electron velocity distribution on the plasma expansion features, Journal of Applied Physics. 106 (2009) 033309. https://doi.org/10.1063/1.3168437
[19] M.N.S. Qureshi, H.A. Shah, G. Murtaza, S.J. Schwartz, F. Mahmood, Parallel propagating electromagnetic modes with the generalized (r,q) distribution function, Physics of Plasmas 11 (2004)3819. https://doi.org/10.1063/1.1688329