اثرات پخش مغناطیسی و پرتوهای کیهانی بر ناپایداری حرارتی

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

مرکز تحقیقات نجوم و اخترفیزیک مراغه، دانشگاه مراغه، ایران

چکیده

در این پژوهش، اثرات پرتوهای کیهانی و پخش مغناطیسی، بر ناپایداری حرارتی در محیط میان‌ستاره‌ای، مورد بررسی قرار می‌گیرد. ما، اثرات دینامیکی و گرمایشی پرتوهای کیهانی بر چگالش حرارتی را، با فرض این که پرتوها در امتداد خطوط میدان مغناطیسی منتشر می‌شوند و پخش مغناطیسی نیز رخ می‌دهد، بررسی می‌کنیم. برای میدان مغناطیسی زمینه، دو حالت در نظر گرفته شده است: میدان ثابت و میدان بی‌نیرو. در دنبالة مطالعات پیشین، ما روش تحلیل اختلال خطی را برای بررسی ناپایداری حرارتی در محیط مورد استفاده قرار داده‌ایم. نتایج به‌دست آمده نشان می‌دهند که پرتوهای کیهانی نرخ رشد مدهای تراکمی مغناطو‌ـ‌حرارتی را کاهش، و نواحی پایداری را افزایش می‌دهند. با این حال، پخش مغناطیسی رفتاری دوگانه بروز می‌دهد که تابعی از شرایط است. منظور از رفتار دوگانه این است که پخش مغناطیسی، نواحی پایداری را به‌ازای موارد کمتر از مقداری مشخص، افزایش، و برای موارد بزرگتر از این مقدار کاهش می‌دهد. علاوه بر این، ما دریافتیم که از بابت اثرات دینامیکی، پخش مغناطیسی بر پرتوهای کیهانی غلبه دارد. در نهایت، نتایج ما دلالت بر وجود ناحیه‌هایی دارند که در آنها تکه‌تکه شدن ابرها به ‌قپه‌ها و هسته‌ها تحت اثر تراکم مغناطو‌ـ‌حرارتی اتفاق می‌افتد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effects of Magnetic Diffusion and Cosmic-rays on Thermal Instability

نویسندگان [English]

  • Amir Abbas Eslami Shafigh
  • Amir Abbas Eslami Shafigh
Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), University of Maragheh, Maragheh, Iran
چکیده [English]

In this study, we consider the effects of the cosmic rays and the magnetic diffusion on the thermal instability in the interstellar mediums. The dynamical effect as well as the heating effect of the cosmic rays are investigated on the thermal condensation in a medium where the cosmic rays diffuse along the magnetic field lines and the magnetic diffusion is present. Two separate profiles, i.e. constant field and force-free field, are considered for the magnetic field of the medium background. The linear perturbation analysis is used for the study of the thermal instability in a medium with a point of view on the previous works. The results show that the cosmic rays reduce the growth rate of the magnetothermal condensation mode, and increase the domains of stability. However, the magnetic diffusion shows two different behaviors which depend on a number of conditions affecting the magnetic diffusivity. In other words, the magnetic diffusion increases the domains of stability for cases less than a certain value of magnetic diffusivity, and decrease the domains of stability for cases larger than this certain value. Furthermore, we found that the dynamical effect of the magnetic diffusion dominates the dynamical effect of the cosmic rays. Finally, the results address some regions in which the fragmentation of the clouds into clumps and cores can be seen with the magnetothermal condensation effects.

کلیدواژه‌ها [English]

  • ISM
  • cosmic rays
  • instabilities
  • waves
  • magnetohydrodynamics
[1] H. Koyama, Shu-Ichiro Inutsuka, Molecular Cloud Formation in Shock-compressed Layers, The Astrophysical Journal 532 (2000) 980-993. https://doi.org/10.1086%2F308594
[2] C.F. McKee, C.B. Mitchell, Steady evaporation and condensation of isolated clouds in hot plasma, The Astrophysical Journal 358 (1990) 392. https://doi.org/10.1086%2F168995
[3] C.F. McKee, J.P. Ostriker, A theory of the interstellar medium - Three components regulated by supernova explosions in an inhomogeneous substrate, The Astrophysical Journal 218 (1977) 148. https://doi.org/10.1086%2F155667
[4] C. Xia, R. Keppens, Internal dynamics of a twin-layer solar prominence, The Astrophysical Journal 825 (2016) L29. https://doi.org/10.3847%2F2041-8205%2F825%2F2%2Fl29
[5] A.R. Khesali, S.M. Ghoreyshi, M. Nejad-Asghar, Thermal instability in molecular clouds, including dust particles, Hall effect and ambipolar diffusion, Monthly Notices of the Royal Astronomical Society 420.3 (2012) 2300-2306.
[6] M. Shadmehri, M. Nejad-Asghar, A. Khesali, Thermal instability in ionized plasma, Astrophysics and Space Science 326.1 (2010) 83-90.
[7] S.W. Stahler, P. Francesco, The Formation of Stars. Wiley, 2004. https://doi.org/10.1002%2F9783527618675
[8] B.T. Draine, On radiation pressure in static, dusty H Ii regions, The Astrophysical Journal 732 (2011) 100. https://doi.org/10.1088%2F0004-637x%2F732%2F2%2F100
[9] R.M. Crutcher, Magnetic fields in molecular clouds, Annual Review of Astronomy and Astrophysics. 50 (2012) 29-63.
[10] F.H. Shu, The Physics of Astrophysics: Gas Dynamics. 2 University Science Books (1991).
[11] A. Dalgarno, M. Yan, W. Liu, Electron energy deposition in a gas mixture of atomic and molecular hydrogen and helium, The Astrophysical Journal Supplement Series 125 1 (1999) 237.
[12] J.L. Spitzer, M.G. Tomasko, Heating of H i regions by energetic particles, The Astrophysical Journal 971 (1968) 152.
[13] N. Indriolo, J. Benjamin McCall, Investigating the cosmic-ray ionization rate in the galactic diffuse interstellar medium through observations of H+ 3, The Astrophysical Journal 745 1 (2012) 91.
[14] J.E. Everett, G.Z. Ellen, The Interaction of Cosmic Rays with Diffuse Clouds, The Astrophysical Journal 739 2 (2011): 60.
[15] M. Padovani, et al., Cosmic-ray ionisation in circumstellar discs, A&A 614 (2018) A111. https://doi.org/10.1051/0004-6361/201732202
[16] M. Gholipour, Is the Ohmic resistivity important in the gravitational collapse of a filamentary cloud? Monthly Notices of the Royal Astronomical Society 487 (2019) 3631-3643. https://doi.org/10.1093%2Fmnras%2Fstz1535
[17] J. Wurster, M.R. Bate, D. Price, The collapse of a molecular cloud core to stellar densities using radiation non-ideal magnetohydrodynamics, Monthly Notices of the Royal Astronomical Society 475 (2018) 1859-1880. https://doi.org/10.1093%2Fmnras%2Fstx3339
[18] M. Gholipour, Gravitational collapse of a filamentary cloud with ambipolar diffusion, Monthly Notices of the Royal Astronomical Society 480 (2018) 742-750. https://doi.org/10.1093%2Fmnras%2Fsty1907
[19] P. Marchand, et al., Chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core-collapse calculations, Astronomy & amp Astrophysics 592 (2016) A18. https://doi.org/10.1051%2F0004-6361%2F201526780
[20] J. Wurster, D.J. Price, M.R. Bate, Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?, Monthly Notices of the Royal Astronomical Society 457 (2016) 1037-1061. https://doi.org/10.1093%2Fmnras%2Fstw013
[21] M. Padovani, et al., The role of cosmic rays on magnetic field diffusion and the formation of protostellar discs, Astronomy & amp Astrophysics 571 (2014) A33. https://doi.org/10.1051%2F0004-6361%2F201424035
[22] J. Wurster, D. Price, B. Ayliffe, Ambipolar diffusion in smoothed particle magnetohydrodynamics, Monthly Notices of the Royal Astronomical Society 444 (2014) 1104-1112. https://doi.org/10.1093%2Fmnras%2Fstu1524
[23] P.H. Bodenheimer, Principles of Star Formation. Springer Berlin Heidelberg, (2011). https://doi.org/10.1007%2F978-3-642-15063-0
[24] R. Krasnopolsky, Z.Y. Li, H. Shang, Disk formation enabled by enhanced resistivity, The Astrophysical Journal 716 (2010) 1541-1550. https://doi.org/10.1088%2F0004-637x%2F716%2F2%2F1541
[25] M. Shadmehri, A. Mohsen Nejad, A. Khesali, Thermal instability in ionized plasma, Astrophysics and Space Science 326 (2009) 83-90. https://doi.org/10.1007%2Fs10509-009-0210-8
[26] F. Yusef-Zadeh, M. Wardle, S. Roy, Cosmic-Ray Heating of Molecular Gas in the Nuclear Disk: Low Star Formation Efficiency, The Astrophysical Journal 665 (2007) L123--L126. https://doi.org/10.1086%2F521359
[27] H. Stiele, H. Lesch, F. Heitsch, Thermal instability in a weakly ionized plasma, Monthly Notices of the Royal Astronomical Society 372 (2006) 862-868. https://doi.org/10.1111%2Fj.1365-2966.2006.10909.x
[28] T. Kuwabara, Ko. Chung-Ming, Parker-Jeans Instability of Gaseous Disks Including the Effect of Cosmic Rays, The Astrophysical Journal 636 (2006) 290-302. https://doi.org/10.1086%2F498056
[29] F.H. Shu, et al., Gravitational Collapse of Magnetized Clouds. II. The Role of Ohmic Dissipation, The Astrophysical Journal 647 (2006) 382-389.  https://doi.org/10.1086%2F505258
[30] M. Nejad-Asghar, J. Ghanbari, Linear thermal instability and formation of clumpy gas clouds including ambipolar diffusion, Monthly Notices of the Royal Astronomical Society 345 (2003) 1323-1328. https://doi.org/10.1046%2Fj.1365-2966.2003.07053.x
[31] T. Nakano, R. Nishi, T. Umebayashi, Mechanism of Magnetic Flux Loss in Molecular Clouds, The Astrophysical Journal 573 (2002) 199-214. https://doi.org/10.1086%2F340587
[32] S.J. Desch, Ch. Telemachos Mouschovias, The Magnetic Decoupling Stage of Star Formation, The Astrophysical Journal 550 (2001) 314-333. https://doi.org/10.1086%2F319703
[33] P.F. Goldsmith, Molecular Depletion and Thermal Balance in Dark Cloud Cores, The Astrophysical Journal 557 (2001) 736-746. https://doi.org/10.1086%2F322255
[34] M. Hanasz, H. Lesch, Cosmic-Ray Evolution in Parker-unstable Galactic Magnetic Fields, The Astrophysical Journal 543 (2000) 235-244. https://doi.org/10.1086%2F317077
[35] M. Wardle, Ng. Cindy, The conductivity of dense molecular gas, Monthly Notices of the Royal Astronomical Society 303 (1999) 239-246. https://doi.org/10.1046%2Fj.1365-8711.1999.02211.x
[36] T. Nakano, T. Umebayashi, Dissipation of magnetic fields in very dense interstellar clouds - I. Formulation and conditions for efficient dissipation, Monthly Notices of the Royal Astronomical Society 218 (1986) 663-684. https://doi.org/10.1093%2Fmnras%2F218.4.663
[37] V.D. Kuznetsov, V.S. Ptuskin, Stability of the equilibrium distributions of interstellar gas, cosmic rays, and magnetic field in an external gravitational field, Astrophysics and Space Science 94 (1983) 5-21. https://doi.org/10.1007%2Fbf00651757
[38] P.F. Goldsmith, W.D. Langer, Molecular cooling and thermal balanceof dense interstellar clouds, The Astrophysical Journal 222 (1978) 881. https://doi.org/10.1086%2F156206
[39] G.B. Field, Thermal Instability, The Astrophysical Journal 142 (1965) 531. https://doi.org/10.1086%2F148317
[40] L. Mestel, L. Spitzer, Star Formation in Magnetic Dust Clouds, Monthly Notices of the Royal Astronomical Society 116 (1956) 503-514. https://doi.org/10.1093%2Fmnras%2F116.5.503
[41] C.J. Wareing, S.A.E.G. Falle, J.M. Pittard, Sheets, filaments, and clumps – high-resolution simulations of how the thermal instability can form molecular clouds, Monthly Notices of the Royal Astronomical Society 485 (2019) 4686-4702. https://doi.org/10.1093%2Fmnras%2Fstz768
[42] C.J. Wareing, et al., A new mechanical stellar wind feedback model for the Rosette Nebula, Monthly Notices of the Royal Astronomical Society 475 (2018) 3598-3612. https://doi.org/10.1093%2Fmnras%2Fsty148
[43] M.R. Krumholz, Star Formation. World Scientific, 2017. https://doi.org/10.1142%2F10091
[44] C.J. Wareing, J.M. Pittard, S.A.E.G. Falle, Hydrodynamic simulations of mechanical stellar feedback in a molecular cloud formed by thermal instability, Monthly Notices of the Royal Astronomical Society 470 (2017) 2283-2313. https://doi.org/10.1093%2Fmnras%2Fstx1417
[45] C.J. Wareing, J.M. Pittard, S.A.E.G. Falle, Magnetohydrodynamic simulations of mechanical stellar feedback in a sheet-like molecular cloud, Monthly Notices of the Royal Astronomical Society 465 (2016) 2757-2783. https://doi.org/10.1093%2Fmnras%2Fstw2990
[46] L. Hartmann, Accretion Processes in Star Formation. Cambridge University Press, (2008). https://doi.org/10.1017%2Fcbo9780511552090
[47] M. Wardle, Star Formation and the Hall Effect, Astrophysics and Space Science 292 (2004) 317-323. https://doi.org/10.1023%2Fb%3Aastr.0000045033.80068.1f
[48] C.F. McKee, The Dynamical Structure and Evolution of Giant Molecular Clouds, The Origin of Stars and Planetary Systems. Springer Netherlands, (1999). 29-66. https://doi.org/10.1007%2F978-94-011-4509-1_2
[49] W.H Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes, 2nd ed., Cambridge University Press (1992).
[50] M. Gholipour, P. Davoudifar, A.A. Eslami Shafigh, Thermal instability in the presence of the cosmic ray and ambipolar diffusion, Monthly Notices of the Royal Astronomical Society 510.3 (2021) 3437-3448.
[51] H. Koyama, Sh.I. Inutsuka, An origin of supersonic motions in interstellar clouds. (2001). http://arxiv.org/abs/astro-ph/0112420
[52] M.G. Wolfire, Neutral Atomic Phases of the Interstellar Medium in the Galaxy, The astrophysical journal 587.1 (2003) 278–311. https://doi.org/10.1086/368016
[53] E.R. Owen, Observational signatures of cosmic-ray interactions in molecular clouds, The astrophysical journal 913.1 (2021) 52. https://doi.org/10.3847/1538-4357/abee1a
[54] A.V. Ivlev, Penetration of cosmic rays into dense molecular clouds: Role of diffuse envelopes, The astrophysical journal 855.1 (2018) 23. https://doi.org/10.3847/1538-4357/aaadb9
[55] K. Silsbee, A.V. Ivlev, Diffusive versus free-streaming cosmic-ray transport in molecular clouds, The astrophysical journal 879.1 (2019) 14. https://doi.org/10.3847/1538-4357/ab22b4
[56] M. Padovani, G. Daniele, A.E. Glassgold, Cosmic-ray ionization of molecular clouds (Corrigendum), Astronomy and astrophysics 549 (2013) C3. https://doi.org/10.1051/0004-6361/200911794e
[57] M. Padovani, A.V. Ivlev, D. Galli, P. Caselli, Cosmic-ray ionisation in circumstellar discs, Astronomy & Astrophysics 614 (2018).