[1] H. Koyama, Shu-Ichiro Inutsuka, Molecular Cloud Formation in Shock-compressed Layers, The Astrophysical Journal 532 (2000) 980-993. https://doi.org/10.1086%2F308594
[2] C.F. McKee, C.B. Mitchell, Steady evaporation and condensation of isolated clouds in hot plasma, The Astrophysical Journal 358 (1990) 392. https://doi.org/10.1086%2F168995
[3] C.F. McKee, J.P. Ostriker, A theory of the interstellar medium - Three components regulated by supernova explosions in an inhomogeneous substrate, The Astrophysical Journal 218 (1977) 148. https://doi.org/10.1086%2F155667
[5] A.R. Khesali, S.M. Ghoreyshi, M. Nejad-Asghar, Thermal instability in molecular clouds, including dust particles, Hall effect and ambipolar diffusion, Monthly Notices of the Royal Astronomical Society 420.3 (2012) 2300-2306.
[6] M. Shadmehri, M. Nejad-Asghar, A. Khesali, Thermal instability in ionized plasma, Astrophysics and Space Science 326.1 (2010) 83-90.
[9] R.M. Crutcher, Magnetic fields in molecular clouds, Annual Review of Astronomy and Astrophysics. 50 (2012) 29-63.
[10] F.H. Shu, The Physics of Astrophysics: Gas Dynamics. 2 University Science Books (1991).
[11] A. Dalgarno, M. Yan, W. Liu, Electron energy deposition in a gas mixture of atomic and molecular hydrogen and helium, The Astrophysical Journal Supplement Series 125 1 (1999) 237.
[12] J.L. Spitzer, M.G. Tomasko, Heating of H i regions by energetic particles, The Astrophysical Journal 971 (1968) 152.
[13] N. Indriolo, J. Benjamin McCall, Investigating the cosmic-ray ionization rate in the galactic diffuse interstellar medium through observations of H+ 3, The Astrophysical Journal 745 1 (2012) 91.
[14] J.E. Everett, G.Z. Ellen, The Interaction of Cosmic Rays with Diffuse Clouds, The Astrophysical Journal 739 2 (2011): 60.
[16] M. Gholipour, Is the Ohmic resistivity important in the gravitational collapse of a filamentary cloud? Monthly Notices of the Royal Astronomical Society 487 (2019) 3631-3643. https://doi.org/10.1093%2Fmnras%2Fstz1535
[17] J. Wurster, M.R. Bate, D. Price, The collapse of a molecular cloud core to stellar densities using radiation non-ideal magnetohydrodynamics, Monthly Notices of the Royal Astronomical Society 475 (2018) 1859-1880. https://doi.org/10.1093%2Fmnras%2Fstx3339
[19] P. Marchand, et al., Chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core-collapse calculations, Astronomy & amp Astrophysics 592 (2016) A18. https://doi.org/10.1051%2F0004-6361%2F201526780
[20] J. Wurster, D.J. Price, M.R. Bate, Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?, Monthly Notices of the Royal Astronomical Society 457 (2016) 1037-1061. https://doi.org/10.1093%2Fmnras%2Fstw013
[22] J. Wurster, D. Price, B. Ayliffe, Ambipolar diffusion in smoothed particle magnetohydrodynamics, Monthly Notices of the Royal Astronomical Society 444 (2014) 1104-1112. https://doi.org/10.1093%2Fmnras%2Fstu1524
[26] F. Yusef-Zadeh, M. Wardle, S. Roy, Cosmic-Ray Heating of Molecular Gas in the Nuclear Disk: Low Star Formation Efficiency, The Astrophysical Journal 665 (2007) L123--L126. https://doi.org/10.1086%2F521359
[28] T. Kuwabara, Ko. Chung-Ming, Parker-Jeans Instability of Gaseous Disks Including the Effect of Cosmic Rays, The Astrophysical Journal 636 (2006) 290-302. https://doi.org/10.1086%2F498056
[29] F.H. Shu, et al., Gravitational Collapse of Magnetized Clouds. II. The Role of Ohmic Dissipation, The Astrophysical Journal 647 (2006) 382-389. https://doi.org/10.1086%2F505258
[30] M. Nejad-Asghar, J. Ghanbari, Linear thermal instability and formation of clumpy gas clouds including ambipolar diffusion, Monthly Notices of the Royal Astronomical Society 345 (2003) 1323-1328. https://doi.org/10.1046%2Fj.1365-2966.2003.07053.x
[31] T. Nakano, R. Nishi, T. Umebayashi, Mechanism of Magnetic Flux Loss in Molecular Clouds, The Astrophysical Journal 573 (2002) 199-214. https://doi.org/10.1086%2F340587
[32] S.J. Desch, Ch. Telemachos Mouschovias, The Magnetic Decoupling Stage of Star Formation, The Astrophysical Journal 550 (2001) 314-333. https://doi.org/10.1086%2F319703
[33] P.F. Goldsmith, Molecular Depletion and Thermal Balance in Dark Cloud Cores, The Astrophysical Journal 557 (2001) 736-746. https://doi.org/10.1086%2F322255
[34] M. Hanasz, H. Lesch, Cosmic-Ray Evolution in Parker-unstable Galactic Magnetic Fields, The Astrophysical Journal 543 (2000) 235-244. https://doi.org/10.1086%2F317077
[36] T. Nakano, T. Umebayashi, Dissipation of magnetic fields in very dense interstellar clouds - I. Formulation and conditions for efficient dissipation, Monthly Notices of the Royal Astronomical Society 218 (1986) 663-684. https://doi.org/10.1093%2Fmnras%2F218.4.663
[37] V.D. Kuznetsov, V.S. Ptuskin, Stability of the equilibrium distributions of interstellar gas, cosmic rays, and magnetic field in an external gravitational field, Astrophysics and Space Science 94 (1983) 5-21. https://doi.org/10.1007%2Fbf00651757
[38] P.F. Goldsmith, W.D. Langer, Molecular cooling and thermal balanceof dense interstellar clouds, The Astrophysical Journal 222 (1978) 881. https://doi.org/10.1086%2F156206
[41] C.J. Wareing, S.A.E.G. Falle, J.M. Pittard, Sheets, filaments, and clumps – high-resolution simulations of how the thermal instability can form molecular clouds, Monthly Notices of the Royal Astronomical Society 485 (2019) 4686-4702. https://doi.org/10.1093%2Fmnras%2Fstz768
[42] C.J. Wareing, et al., A new mechanical stellar wind feedback model for the Rosette Nebula, Monthly Notices of the Royal Astronomical Society 475 (2018) 3598-3612. https://doi.org/10.1093%2Fmnras%2Fsty148
[44] C.J. Wareing, J.M. Pittard, S.A.E.G. Falle, Hydrodynamic simulations of mechanical stellar feedback in a molecular cloud formed by thermal instability, Monthly Notices of the Royal Astronomical Society 470 (2017) 2283-2313. https://doi.org/10.1093%2Fmnras%2Fstx1417
[45] C.J. Wareing, J.M. Pittard, S.A.E.G. Falle, Magnetohydrodynamic simulations of mechanical stellar feedback in a sheet-like molecular cloud, Monthly Notices of the Royal Astronomical Society 465 (2016) 2757-2783. https://doi.org/10.1093%2Fmnras%2Fstw2990
[49] W.H Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes, 2nd ed., Cambridge University Press (1992).
[50] M. Gholipour, P. Davoudifar, A.A. Eslami Shafigh, Thermal instability in the presence of the cosmic ray and ambipolar diffusion, Monthly Notices of the Royal Astronomical Society 510.3 (2021) 3437-3448.
[52] M.G. Wolfire, Neutral Atomic Phases of the Interstellar Medium in the Galaxy, The astrophysical journal 587.1 (2003) 278–311. https://doi.org/10.1086/368016
[57] M. Padovani, A.V. Ivlev, D. Galli, P. Caselli, Cosmic-ray ionisation in circumstellar discs, Astronomy & Astrophysics 614 (2018).