پتانسیل پاشندگی یک اتم حالت پایه در محیط‌های مغناطوالکتریک اتلافی با پاسخ غیر موضعی

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

گروه فوتونیک، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

چکیده

به‌کمک روش اختلال، رابطة انرژی پتانسیل پاشندگی یک اتم الکتریکی و یا مغناطیسی حالت پایه در حضور مواد مغناطوالکتریک اتلافی را به محیط‌های غیرموضعی تعمیم داده‌ایم. از آنجایی که رابطة نهایی به هندسة سیستم وابسته است، می‌توان نیروی کازیمیر-پولدر را نیز در چنین سیستم‌هایی با محاسبة شیب انرژی پتانسیل به‌دست آورد. اگرچه رابطة پتانسیل به لحاظ شکل ظاهری کاملاً مشابه با رابطة متناظر در محیط‌های موضعی می‌باشد که پیش‌تر به‌دست آمده است، اما به‌دلیل تفاوت تانسور گرین محیط‌های موضعی با محیط غیرموضعی و وابستگی رابطة نهایی پتانسیل پاشندگی به تانسور گرین محیط، نتایج کاملاً متفاوتی به‌دست می‌آوریم.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dispersion Potential of a Ground-state Atom in the Presence of Nonlocal Magnetoelectric Media

نویسندگان [English]

  • Hamid Rasti
  • Hassan Safari
Department of Photonics, Graduate University of Advanced Technology, Kerman, Iran
چکیده [English]

The dispersion potential for a single ground-state of an electric and/or magnetic atom has been generalized in the presence of magnetoelectric media, making use of perturbation theory to the ones with nonlocal responses. As the final relation depends on the geometry of the system, the Casimir-Polder force in such systems can be obtained by calculating the gradient of the potential. It will be seen that the potential formula is totally similar to the previously obtained relation for local media. The dependence of the final relation on the Green tensor, geometrically similar systems with different natures of responses to the electromagnetic field may present different results for dispersion potential.

کلیدواژه‌ها [English]

  • Dispersion potential
  • Dissipative magnetoelectric body
  • Nonlocal media
  • Green tensor
[1] J.E. Lennard-Jones, Processes of Absorption and Diffusion on Solid Surfaces, Transactions of the Faraday Society 28 (1932) 333. https://doi.org/10.1039/TF9322800333
[2] H.B.G. Casimir, D. Polder, The Influence of Radiation on the London- Van der Waals forces, Physical Review 73 (1948) 360. https://doi.org/10.1103/PhysRev.73.360
[3] H.B.G. Casimir, On the Attraction of Two Perfectly Conducting Plates. Proceedings of the Koninklijke Nederlandse Akademie 51 (1948) 793.
[4] F. Armata, R. Vasile, P. Barcellona, S.Y. Buhmann, Dynamical Casimir-Polder force between an excited atom and a conducting wall, Physical Review A 94 (2016) 042511. https://doi.org/10.1103/PhysRevA.94.042511
[5] P. Thiyam, P. Parashar, K.V. Shajesh, C. Persson, M. Schaden, I. Brevik, D.F. Parsons, K.A. Milton, O.I. Malyi, M. Boström, Anisotropic contribution to the van der Waals and the Casimir-Polder energies for CO2 and CH4 molecules near surfaces and thin films. Physical Review A 92 (2015) 052704. https://doi.org/10.1103/PhysRevA.92.052704
[6] G.L. Klimchitskaya, V.M. Mostepanenko, Classical Casimir-Polder force between polarizable microparticles and thin films including grapheme, Physical Review A 89 (2014) 012516. https://doi.org/10.1103/PhysRevA.89.012516
[7] S. Scheel, S.Y. Buhmann, C. Clausen, P. Schneeweiss, Directional spontaneous emission and lateral Casimir-Polder force on an atom close to a nanofiber, Physical Review A 92 (2015) 043819.
[8] A.M. Alhambra, A. Kempf, E. Martin-Martinez, Casimir forces on atoms in optical cavities, Physical Review A 89 (2014) 033835. https://doi.org/10.1103/PhysRevA.92.043819
[9] S.Y. Buhmann, V.N. Marachevsky, S. Scheel, Charge–Parity violating effects in Casimir–Polder potentials, Physical Review A 98 (2018) 022510. https://doi.org/10.1103/PhysRevA.98.022510
[10] P. Barcellona, R. Passante, L. Rizzuto, S.Y. Buhmann, Dynamical Casimir-Polder interaction between a chiral molecule and a surface, Physical Review A 93 (2015) 032508. https://doi.org/10.1103/PhysRevA.93.032508
[11] A. Manjavacas, F.J. Rodriguez-Fortuno, F.J. Garcia de Abajo, A.V. Zayats, Lateral Casimir force on a rotating particle near a planar surface. Physical Review Letters 118 (2016) 133605. https://doi.org/10.1103/PhysRevLett.118.133605
[12] S. Fuchs, R. Bennett, S.Y. Buhmann, Casimir–Polder Potential of a Driven Atom, Physical Review A 98 (2018) 022514. https://doi.org/10.1103/PhysRevA.98.022514
[13] K.A. Milton, E.K. Abalo, P. Parashar, N. Pourtolami, I. Brevik, S.A. Ellingsen, S.Y. Buhmann, S. Scheel, Casimir-Polder repulsion: Three-body effects, Physical Review A 91 (2015) 042510. https://doi.org/10.1103/PhysRevA.91.042510
[14] G. Feinberg, J. Sucher, General Form of the Retarded Van der Waals Potential, Journal of Chemical Physics 48 (1968) 3333. https://doi.org/10.1063/1.1669611
[15] T.H. Boyer, Recalculations of Long-Range van der Waals Potentials, Physical Review 180 (1969) 19.
[16] G. Feinberg, J. Sucher, General Theory of the van der Waals Interaction: A Model-Independent Approach, Physical Review A 2 (1970) 2395. https://doi.org/10.1103/PhysRevA.2.2395
[17] C. Mavroyannis, The interaction of neutral molecules with dielectric surfaces, Molecular Physics 6 (1963) 593. https://doi.org/10.1080/00268976300100691
[18] A.D. McLachlan, Van der Waals Forces Between an Atom and a Surface. Molecular Physics 7 (1964) 381. https://doi.org/10.1080/00268976300101141
[19] M.S. Tomaš, Vacuum Force on an Atom in a Magnetodielectric Cavity, Physical Review A 72 (2005) 034104. https://doi.org/10.1103/PhysRevA.72.034104
[20] M.S. Tomaš, Medium-Modified Casimir Forces, Journal of Physics A: Mathematical and General 39 (2006) 6785. https:// doi.org/10.1088/0305-4470/39/21/S80
[21] S.Y. Buhmann, H. Safari, S. Scheel, A. Salam, Body-assisted dispersion potentials of diamagnetic atoms, Physical Review A 87 (2013) 012507. https://doi.org/10.1103/PhysRevA.87.012507
[22] P. Barcellona, H. Safari, A. Salam, S.Y. Buhmann, Enhanced chiral discriminatory van der Waals interactions mediated by chiral surfaces, Physical Review Letters 118 (2017) 193401. https://doi.org/10.1103/PhysRevLett.118.193401
[23] S. Esfandiarpour, R. Bennett, H. Safari, S.Y. Buhmann, Cavity-QED interactions of two correlated atoms, Journal of Physics B: Atomic, Molecular and Optical Physics 51 (2017) 9. https://doi.org/10.1088/1361-6455/aaae41
[24] T. Emig, N. Graham, R.L. Jaffe, M. Kardar, Casimir Forces between Arbitrary Compact Objects. Physical Review Letters 99 (2007) 170403. https://doi.org/10.1103/PhysRevLett.99.170403
[25] T.L. Ferrell, R.H. Ritchie, Dynamical and Geometrical Effects on the Physisorption of Atoms, Physical Review A 21 (1980) 1305. https://doi.org/10.1103/PhysRevA.21.1305
[26] Y.C. Cheng, J.S. Yang, Enhancement of the van der Waals Energy between an Atom and a Cylindrical Surface: Application to the Edges of Stepped Surfaces, Physical Review B 41 (1990) 1196. https://doi.org/10.1103/PhysRevB.41.1196
[27] S. Esfandiarpour, H. Safari, S.Y. Buhmann, Cavity-QED interactions of several atoms, Journal of Physics B: Atomic, Molecular and Optical Physics 52 (2019) 8. https://doi.org/10.1088/1361-6455/aaf6d7
[28] L. Rizzuto, R. Passante, F. Persico, Dynamical Casimir-Polder Energy Between an Excited and a Ground-State Atom, Physical Review A 70 (2004) 012107. https://doi.org/10.1103/PhysRevA.70.012107
[29] E.A. Power, T. Thirunamachandran, Dispersion Forces between Molecules with One or Two Molecules Excited, Physical Review A 51 (1995) 3660. https://doi.org/10.1103/PhysRevA.51.3660
[30] Y. Sherkunov, Van der Waals Interaction of Excited Media, Physical Review A 72 (2005) 052703. https://doi.org/10.1103/PhysRevA.72.052703
[31] H. Safari, M.R. Karimpour, Body-Assisted van der Waals Interaction between Excited Atoms Physical Review Letters 114 (2014) 013201. https://doi.org/10.1103/PhysRevLett.114.013201
[32] M. Donaire, R. Guerout, A. Lambrecht, Quasi-resonant van der Waals interaction between non-identical atoms, Physical Review Letters 115 (2015) 033201. https://doi.org/10.1103/PhysRevLett.115.033201
[33] C. Raabe, S. Scheel, D.-G. Welsch, Unified Approach to QED in Arbitrary Linear Media, Physical Review A 75 (2007) 053813. https://doi.org/10.1103/PhysRevA.75.053813
[34] S.Y. Buhmann, L. Knoll, D.-G. Welsch, H.T. Dung, Casimir-Polder forces: A nonperturbative approach Physical Review A 70 (2004) 052117.
[35] L. Knöll, S. Scheel, D.-G. Welsch, QED in Dispersing and Absorbing Media, Wiley, New York (2001).