Design, simulation and fabrication of perovskite solar cell based on V2O5/Ag/WO3 transparent electrode

Document Type : Full length research Paper

Authors

1 Department of Laser and Photonics, Faculty of Physics, University of Kashan, Kashan, Iran

2 Department of Physics, Faculty of Sciences, Shahrekord University, Shahrekord, Iran

3 Nanotechnology Research Institute, Shahrekord University, Shahrekord, Iran

Abstract

In this research, using the characteristic matrix theory, the three-layer V2O5/Ag/WO3 (VAW) electrode as a transparent conductive structure is designed and its optimal structure is determined. Then, a perovskite solar cell based on a VAW three-layer electrode with Glass/V2O5/Ag/WO3/PEDOT:PSS/CH3NH3PbI3/PCBM/Al structure is considered and the optical properties of the perovskite solar cell are investigated using the transfer matrix method (TMM). In the following, it is shown that the effects of changing the thickness of the WO3 layer on the optical properties of the three-layer VAW and the perovskite solar cell based on the VAW electrode are more significant than the effects of changing the thickness of the layer V2O5. The maximum short circuit current density (19.3 mA/cm2) in the perovskite solar cell based on the VAW electrode was obtained for the thicknesses of the V2O5 layer of 40 nm and WO3 layer of 55 nm, which is 12.2% higher than the calculated value for perovskite solar cell based on ITO electrode (17.2 mA/cm2). Finally, the perovskite solar cell based on the optimized VAW electrode was fabricated and the results showed that this solar cell has better performance than solar cell based on the commercial ITO electrode.

Keywords

Main Subjects


[1] M.J. Namvar, M.H. Abbaspour Fard, M.R. Roknabadi, A. Behjat, M. Mirzaei, investigating the effect of adding combined Rubidium-Cesium cations on the performance of FAMAPb(IBr)3 mixed halide and cation perovskite solar cells, Journal of Research on Many-body Systems, 8 19 (2018) 125-138. https://doi.org/10.22055/jrmbs.2018.13963
[2] A. Mohammadbeigi, S.M. Ghorashi, The Study of Different Electron Transporting Materials on the Optical Performance of the Perovskite Solar Cells, Journal of Research on Many-body Systems 10 1 (2020) 77-86. https://doi.org/10.22055/jrmbs.2018.13893
[3] F. He, H.You, X. Li, D.Chen, S. Pang, W. Zhu, H. Xi, J. Zhang, C. Zhang, Transparent Ultrathin Metal Electrode with Microcavity Configuration for Highly Efficient TCO-Free Perovskite Solar Cells, Materials 13 (2020) 2328:1-13. https://doi.org/10.3390/ma13102328
[4] P. Basumatary, P. Agarwal, A short review on progress in perovskite solar cells, Materials Research Bulletin 149 (2022) 111700. https://doi.org/10.1016/j.materresbull.2021.111700
[5] S.H. Lee, G. Kim, J. Lim, K. Lee, M. Kang, High-performance ZnO:Ga /Ag/ZnO:Ga multilayered transparent electrodes targeting large-scale perovskite solar cells, Solar Energy Materials and Solar Cells 186 (2018) 378-384. https://doi.org/10.1016/j.solmat.2018.07.010
[6] M. Girtan, B. Negulescu, A review on oxide/metal/oxide thin films on flexible substrates as electrodes for organic and perovskite solar cells, Optical Materials: X 13 (2022) 100122. https://doi.org/10.1016/j.omx.2021.100122.
[7] X. Liu, X. Guo, Z. Gan, N. Zhang, X. Liu, Efficient Perovskite Solar Cells Based on Multilayer Transparent Electrodes Through Morphology Control, The Journal of Physical Chemistry C 120 (2016) 26703–26709. https://doi.org/10.1021/acs.jpcc.6b10288
[8] Z. Li, Stable Perovskite Solar Cells Based on WO3 Nanocrystals as Hole Transport Layer, Chemistry Letters 44 (2015) 1140-1141.  https://doi.org/10.1246/cl.150445
[9] I. Jeon, J. Yoon, N. Ahn, M. Atwa, C. Delacou, A. Anisimov, E. Kauppinen, M.G. Choi, S. Maruyama, Y. Matsuo, Carbon Nanotubes Versus Graphene as Flexible Transparent Electrodes in Inverted Perovskite Solar Cells, The Journal of Physical Chemistry Letters 8 (2017) 5395–5401. https://doi.org/10.1021/acs.jpclett.7b02229
[10] Y. Zhou, R. Azumi, Carbon nanotube based transparent conductive films: progress, challenges, and perspectives, Science and Technology of Advanced Materials 17 (2016) 493-516. https://doi.org/10.1080/14686996.2016.1214526
[11] P.C. Kao, C.J. Hsu, Z.H. Chen, S.H. Chen, Highly transparent and conductive MoO3/Ag/MoO3 multilayer films via air annealing of the MoO3 layer for ITO-free organic solar cells, Journal of Alloys and Compounds 906 (2022) 164378. https://doi.org/10.1016/j.jallcom.2022.164387.
[12] R. Hernandez Castillo, D. Canto-Reyes, A. Borges Pool, J.A. Mendez-Gamboa, M. Acosta, Influence of top layer thickness on the performance of WO3/Ag/WO3-transparent electrodes, Journal of Materials Science: Materials in Electronics 32 (2021) 19063–19069. https://doi.org/10.1007/s10854-021-06422-3
[13] C. Park, J.W. Lim, J.H. Heo, S.H. Im, Color Implementation of High-Efficiency Perovskite Solar Cells by Using Transparent Multilayered Electrodes, Color Implementation of High-Efficiency Perovskite Solar Cells by Using Transparent Multilayered Electrodes. ACS Appl. Energy Mater 5 (2022) 12151–12157. https://doi.org/10.1021/acsaem.2c01658.s001
[14] H. Li, X. Li, W. Wang, J. Huang, J. Li, S. Huang, B. Fan, J. Fang, W. Song, Ultra flexible and biodegradable perovskite solar cells utilizing ultrathin cellophane paper substrates and TiO2/Ag/TiO2 transparent electrodes, Solar Energy 188 (2019) 158–163. https://doi.org/10.1016/j.solener.2019.05.061
[15] M. Nejadzangeneh, S.M. Ghorashi, M. Ghasemi Varnamkhasti, Simulation and optimization of green organic light emitting diode based on TiO2/Ag/MoO3 multilayer electrode, Optics & Laser Technology 143 (2021)107290. https://doi.org/10.1016/j.optlastec.2021.107290
[16] F. Liang, Y. Lin, Z. He, W. Chen, Y. Zhu, T. Chen, L. Liang, M. Suman, Y. Wu, Promising ITO-free Perovskite Solar Cells with WO3-Ag-SnO2 as Transparent Conductive Oxide, Journal of Materials Chemistry A. 6 (2018). https://doi.org/10.1039/C8TA08287A
[17] X. Xie, C. Wu, S. Sun, X. Xu, W. Xu, G. Qin, L. Xiao, Semitransparent Perovskite Solar Cells with Dielectric /Metal/Dielectric Top Electrodes, Energy Technology 8 (2019) 1900868. https://doi.org/10.1002/ente.201900868
[18] T. Babeva, H. Awala, J. Grand, K. Lazarova, M. Vasileva, S. Mintova, Optical and sensing properties of sol-gel derived vanadium pentoxide thin films with porous and dense structures, Journal of Physics: Conference Series 992 (2018) 012038. http://dx.doi.org/10.1088/1742-6596/992/1/012038
[19] P. Shangzheng, X. Li, H. Dong, D. Chen, W. Zhu, J. Chang, Z. Lin, H. Xi, J.F. Zhang, Efficient Bifacial Semitransparent Perovskite Solar Cells Using Ag/V2O5 as Transparent Anodes, ACS Applied Materials & Interfaces 10 (2018) 12731–12739. https://doi.org/10.1021/acsami.8b01611
[20] P. Gurudevi, P. Venkateswari, T. Sivakumar, C. Ramesh, P. Vanitha, Solution Processed WO3 and PEDOT:PSS Composite for Hole Transport Layer in ITO-Free Organic Solar Cells, Journal of Cluster Science inpress (2022). https://doi.org/10.1007/s10876-022-02368-6
[21] R. Mewada, N. Bhagat, V. Saxena, S. Choudhury, A. Mahajan, A. Singh, K.P. Muthe, Low temperature processable crystalline WO3 Langmuir-Blodgett ultra-thin film as blocking layer in solar cells application, AIP Conference Proceedings, 2265 (2020) 030299. https://doi.org/10.1063/5.0016670
[22] M.A. Cherif, A. Labiod, D. Barakel, S. Touihri, P. Torchio, Tailored ZnS/Ag/TiOx transparent and conductive electrode for organic solar cells, EPJ Photovoltaics 10 (2019) 1051. https://doi.org/10.1051/epjpv/2019004
[23] H.A. Macleod, Thin-Film Optical Filters, (4th ed.) CRC Press, New York, (2010). https://doi.org/10.1201/9781420073034
[24] M .Ghasemi Varnamkhasti, E. Shahriari, Influence of heat treatment on characteristics of In2O3/Ag/MoO3 multilayer films as transparent anode for optoelectronic applications, Journal of Applied Physics B 120 (2015) 517-525. https://doi.org/10.1007/s00340-015-6160-7
[25] G. Haacke, New figure of merit for transparent conductors, Journal of Applied Physics, 47 9 (1976) 4086-4089. https://doi.org/10.1063/1.323240
[26] L. Pettersson, L. Roman, O. Inganas, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films, Journal of Applied Physics 86 (1999) 487-496. https://doi.org/10.1063/1.370757
[27] T. Bendib, H. Bencherif, M. Abdi, M. Faycal, L. Dehimi, M. Chahdi, Combined Optical-Electrical modeling of perovskite solar cell with an optimized design, Optical Materials 109 (2020) 110259. https://doi.org/10.1016/j.optmat.2020.110259
[28] S. Han, S. Lim, H. Kim, H. Cho, S. Yoo, Versatile Multilayer Transparent Electrodes for ITO-Free and Flexible Organic Solar Cells, IEEE Journal of Selected Topics in Quantum Electronics 16 (2011) 1656-1664. https://doi.org/10.1109/JSTQE.2010.2041637
[29] M. Soldera, A. Koffman-Frischknecht, K. Taretto, Optical and electrical optimization of all-perovskite pin type junction tandem solar cells, Journal of Physics D: Applied Physics 53 (2020) 315104. https://doi.org/10.1088/1361-6463/ab8851  
[30] C.W. Chen, S.Y. Hsiao, C.Y. Chen, H.W. Kang, Z.Y. Huang, H.W. Lin, Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells, Journal of Materials Chemistry A 3 (2015) 9152-9159. https://doi.org/10.1039/C4TA05237D
[31] F. Cheng, P.-H. Su, J. Choi, S. Gwo, X. Li, C.-K. Shih, Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties, ACS Nano 10 (2016) 9852-9860. https://doi.org/10.1021/acsnano.6b05556
[32] Y. Jiang, S. Pillai, M.A. Green, Realistic Silver Optical Constants for Plasmonics, Scientific Reports 6 (2016) 30605. https://doi.org/10.1038/srep30605
[33] M.G. Hutchins, O. Abu-Alkhair, M.M. El-Nahass, K. Abd El-Hady, Structural and optical characterisation of thermally evaporated tungsten trioxide (WO3) thin films, Materials Chemistry and Physics 98 (2006) 401-405. https://doi.org/10.1016/j.matchemphys.2005.09.052
[34] L. Boudaoud, B. Noureddine, R. Desfeux, B. Khelifa, C. Mathieu, Structural and optical properties Of WO3 and V2O5 thin films prepared by Spray Pyrolysis, Catalysis Today 113 (2006) 230–234. https://doi.org/10.1016/j.cattod.2005.11.072
[35] W. Sha, X. Ren, L. Chen, W. Choy, The Efficiency Limit of CH3NH3PbI3 Perovskite Solar Cells-Supplementary Information, Applied Physics Letters 106 (2015) 22104. https://doi.org/10.1063/1.4922150
[36] D. Han, H. Kim, S. Lee, M. Seo, S. Yoo, Realization of efficient semitransparent organic photovoltaic cells with metallic top electrodes: Utilizing the tunable absorption asymmetry, Optics express 18 (2010) 513-521.  https://doi.org/10.1364/OE.18.00A513
[37] J.C. Ke, Y.H. Wang, K.L. Chen, C.J. uang, Microcavity Enhancing the Performance Using WO3/Au/WO3 as Transparent Electrode various power O2 plasma treatments on the indium tin oxide substrate, Journal of Colloid and Interface Science 465 (2016) 311-315. https://doi.org/10.1016/j.jcis.2015.12.002
[38] P. Shen, L. Shen, Y. Long , G. Chen, Indium Tin Oxide-Free Polymer Solar Cells: Microcavity Enhancing the Performance Using WO3/Au/WO3 as Transparent Electrode, in IEEE Electron Device Letters 35 (2014) 1109-1111. https://doi.org/10.1109/LED.2014.2357712
[39] V.D. Tran, S.V.N. Pammi, J. Choi, S.G. Yoon, Utilization of AZO/Au/AZO multilayer electrodes instead of FTO for perovskite solar cells, Solar Energy Materials and Solar Cells 163 (2017) 58-65. https://doi.org/10.1016/j.solmat.2017.01.008
[40] G. Lucarelli, T. Brown, Development of Highly Bendable Transparent Window Electrodes Based on MoOx, SnO2, and Au Dielectric/Metal/Dielectric Stacks: Application to Indium Tin Oxide (ITO)-Free Perovskite Solar Cells, Frontiers in Materials 6 (2019) 310. https://doi.org/10.3389/fmats.2019.00310