[1] P.A.M. Dirac, The Cosmological Constants, Nature 139 (1937) 323-324. https://doi.org/10.1038/139323a0
[2] P.A.M. Dirac, A new basis for cosmology, Proceedings of the Royal Society of London A 165 (1938) 199. https://doi.org/10.1098/rspa.1938.0053
[3] P.A.M. Dirac, Physical Science and Philosophy, Nature 139 (1937) 1001-1002. https://doi.org/10.1038/1391001a0
[4] H. Weyl, Eine neue Erweiterung der Relativitätstheorie, Annalen der Physics, 59 (1919) 129. https://doi.org/10.1002/andp.19193641002
[5] F. Zwicky, On the Theory and Observation of Highly Collapsed Stars, Physical Review 55 (1939) 726. https://doi.org/10.1103/PhysRev.55.726
[6] A.S. Eddington, The Mathematical Theory of Relativity, Cambridge University Press, London, )1923). https://www.amazon.com/Mathematical-Theory-Relativity-S-Eddington/dp/0521091659
[8] S. Chandrasekhar, The Cosmological Constants, Nature 139 (1937) 757-758. https://doi.org/10.1038/139757b0
[9] D.S. Kothari, Cosmological and Atomic Constants, Nature 142 (1938) 354-355. https://doi.org/10.1038/142354b0
[10] K. Leszczyńska, M.P. Dąbrowski, T. Denkiewicz, Varying constants driven baryogenesis, The European Physical Journal C 79 (2019) 222. https://doi.org/10.1140/epjc/s10052-019-6744-1
[11] G.F.R. Ellis, R. Maartens, M.A.H. Maccallum, Relativistic cosmology, Cambridge University Press, UK, (2012). https://www.cambridge.org/ir/academic/subjects/physics/cosmology-relativity-and-gravitation/relativistic-cosmology?format=HB&isbn=9780521381154
[12] J.P. Uzan, The fundamental constants and their variation: observational and theoretical status, Review of Modern Physics 75 (2003) 403. https://doi.org/10.1103/RevModPhys.75.403
[13] J.P. Uzan, Varying Constants, Gravitation and Cosmology, Living Reviews in Relativity 14 (2011) 2. https://doi.org/10.12942/lrr-2011-2
[14] H. Moradpour, H. Shabani, A.H. Ziaie, Umesh Kumar Sharma, Non-minimal coupling inspires the Dirac cosmological model, The European Physical Journal Plus 136 (2021) 731. https://doi.org/10.1140/epjp/s13360-021-01713-4
[15] C. Brans, R.H. Dicke, Mach's Principle and a Relativistic Theory of Gravitation, Physics Review 124 (1961) 925. https://doi.org/10.1103/PhysRev.124.925
[16] R.H. Dicke, Mach's Principle and Invariance under Transformation of Units, Physics Review 125 (1962) 2163. https://doi.org/10.1103/PhysRev.125.2163
[17] R.H. Dicke, Principle of Equivalence and the Weak Interactions, Review of Modern Physics 29 (1957) 355. https://doi.org/10.1103/RevModPhys.29.355
[18] R.H. Dicke, Dirac's Cosmology and Mach's Principle, Nature 192 (1961) 440-441. https://doi.org/10.1038/192440a0
[19] P. Rastall, Generalization of the Einstein Theory, Physics Review D 6 (1972) 3357. https://doi.org/10.1103/PhysRevD.6.3357
[20] A.S. Al-Rawaf, O.M. Taha, A resolution of the cosmological age puzzle, Physics Letter B 366 (1996) 69. https://doi.org/10.1016/0370-2693(95)01145-5
[21] A.I. Arbab, Cosmological consequences of a built-in cosmological constant model, Journal of Cosmology and Astroparticle Physics 05 (2003) 008. https://doi.org/10.1088/1475-7516/2003/05/008
[22] A.M.M. Abdel-Rahman, M.H.A. Hashim, Gravitational lensing in a model with non-interacting matter and vacuum energies, Astrophysics and Space Science 298 (2005) 519. https://doi.org/10.1007/s10509-005-5839-3
[23] A.M.M. Abdel-Rahman, I.F. Riad, Flat Cosmology with Coupled Matter and Dark Energies, The Astronomical Journal, 134 (2007) 1931. https://doi.org/10.1086/521356
[24] H. Moradpour, A. Bonilla, E.M.C. Abreu, J.A. Neto, Accelerated cosmos in a nonextensive setup, Physical Review D 96 (2017) 123504. https://doi.org/10.1103/PhysRevD.96.123504
[25] R. Li et al., Constraining the Rastall parameters in static space–times with galaxy-scale strong gravitational lensing, Monthly Notices of the Royal Astronomical Society 486 (2019) 2407. https://doi.org/10.1093/mnras/stz967
[26] J.C. Fabris, R. Kerner, J. Tossa, Perturbative analysis of generalized Einstein's theories, International Journal of Modern Physics D 9 (2000) 111. https://doi.org/10.1142/S0218271800000116
[27] A.S. Al-Rawaf, O.M. Taha, Cosmology of general relativity without energy-momentum conservation, General Relativity and Gravitation 28 (1996) 935. https://doi.org/10.1007/BF02113090
[28] C.E.M. Batista, J.C. Fabris, M. Hamani Daouda, Testing Rastall's theory using matter power spectrum, Nuovo Cimento B 125 (2010) 957. http://dx.doi.org/10.1393/ncb/i2010-10895-1
[29] G.F. Silva, O.F. Piattella, J.C. Fabris, L. Casarini, T.O. Barbosa, Bouncing solutions in Rastall’s theory with a barotropic fluid, Gravitation and Cosmology 19 (2013) 156. https://doi.org/10.1134/S0202289313030109
[30] T.R.P. Caramês, M.H. Daouda, J.C. Fabris, A.M. Oliveira, O.F. Piattella, V. Strokov, The Brans–Dicke–Rastall theory, The European Physical Journal C 74 (2014) 3145. https://doi.org/10.1140/epjc/s10052-014-3145-3
[32] A.M. Oliveira, H.E.S. Velten, J.C. Fabris, Non-trivial static, spherically symmetric vacuum solution in a non-conservative theory of gravity, Physical Review D 93 (2016) 124020. https://doi.org/10.1103/PhysRevD.93.124020
[36] H. Moradpour, Y. Heydarzade, F. Darabi, Ines G. Salako, A generalization to the Rastall theory and cosmic eras, The European Physical Journal C 77 (2017) 259. https://doi.org/10.1140/epjc/s10052-017-4811-z
[37] D. Das, S. Dutta, S. Chakraborty, Cosmological consequences in the framework of generalized Rastall theory of gravity, The European Physical Journal C 78 (2018) 810. https://doi.org/10.1140/epjc/s10052-018-6293-z
[38] A.H. Ziaie, Non-Singular gravitational collapse in generalized Rastall theory, Journal of Research on Many body Systems 10 (2020) 47-60. https://dx.doi.org/10.22055/jrmbs.2020.15931
[40] H. Moradpour, Y. Heydarzade, C. Corda, A.H. Ziaie, S. Ghaffari, Black hole solutions and Euler equation in Rastall and generalized Rastall theories of gravity, Modern Physics Letter 37 (2019) 1950304. https://doi.org/10.1142/S0217732319503048
[42] S. Maity, M. Biswas, U. Debnath, Analysis of entropy corrected holographic and new agegraphic dark energy models in generalized Rastall gravity, International Journal of Modern Physics D 35 (2020) 2050175. https://doi.org/10.1142/S0217751X20501754
[43] A. Sardar, U. Debnath, Cosmological consequences of Rényi, Sharma–Mittal holographic and new agegraphic dark energy models in generalized Rastall gravity, Modern Physics Letter A 36 (2021) 2150180. https://doi.org/10.1142/S0217732321501807
[44] H. Shabani, A.H. Ziaie, H. Moradpour, Einstein static universe and its stability in generalized Rastall gravity, Annuals of Physics 444 (2022) 169058. https://doi.org/10.1016/j.aop.2022.169058
[45] I. Noureen, S.A. Mardan, M. Azam, W. Shahzad, S. Khalid, Models of charged compact objects with generalized polytropic equation of state, The European Physical Journal C 79 (2019) 302. https://doi.org/10.1140/epjc/s10052-019-6806-4
[46] S.A. Mardan, M. Rehman, I. Noureen, R.N. Jamil, Impact of generalized polytropic equation of state on charged anisotropic polytropes, The European Physical Journal C 80 (2020) 119. https://doi.org/10.1140/epjc/s10052-020-7647-x
[49] N. Rania, D. Jainb, S. Mahajana , A. Mukherjeea, N. Pires, Transition redshift: new constraints from parametric and nonparametric methods, Journal of Cosmology and Astroparticle Physics 12 (2015) 045. https://doi.org/10.1088/1475-7516/2015/12/045
[50] O. Farooq et al., Hubble Parameter Measurement Constraints on the Redshift of the Deceleration-Acceleration Transition, Dynamical Dark Energy and Space Curvature, Astrophysical Journal 835 (2017) 26. https://doi.org/10.3847/1538-4357/835/1/26
[54] K. Tomita, Formation of Gravitationally Bound Primordial Gas Clouds, Progress in Theoretical Physics 42 (1969) 9. https://doi.org/10.1143/PTP.42.9
[55]https://github.com/CosmologyTaskForce/CoChiSquare/tree/alpha. doi:10.5281/zenodo.13197
[56] http://www.wolfram.com
[58] D. Scolnic et al, The Pantheon+ Analysis: The Full Dataset and Light-Curve Release, arXiv: 2112.03863.
[59] B.A. Basset, R. Hlozek, Baryon acoustic oscillations, arXiv: 0910.5224.
[60] G. Hindshaw, et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophysical Journal Supply 208 (2013) 19. https://doi.org/10.1088/0067-0049/208/2/19