نظریه‌های جفت‌شدگی گرانشی متغیر و نظریة راستال تعمیم یافته

نوع مقاله : مقاله پژوهشی کامل

نویسنده

گروه فیزیک، دانشکده علوم، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

در این مقاله، سازگاری مدل کیهان‌شناسی دیراک که منجر به‌نظریات گرانشی با جفت‌شدگی گرانشی متغیر می‌شود در چارچوب نظریة راستال تعمیم یافته مورد مطالعه قرار گرفته است. علاوه بر این، مسألة کیهان شتابدار کنونی در این سناریو بررسی شده است. دو ماده با معادلة حالت‌های متفاوت در نظر گرفته شده‌اند. مادة چندشکلی تعمیم‌یافته، که در بازه‌ای از مقادیر ثابت‌های مدل، سازگاری قابل قبولی با مشاهدات رصدی دارد. همچنین، با بررسی معادلة حالت گاز چاپلین تعمیم یافته نشان داده شد که مدل گرانشی تحت بررسی که شامل این ماده باشد سازگاری کمتری با نتایج نجومی نشان می‌دهد. به‌طور خلاصه، ما به‌این نتیجه رسیدیم که نظریة تعمیم یافتة راستال قادر است با فرضیة دیراک انطباق یافته، منجر به‌کیهان شتابدار کنونی شود. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Varying gravitational coupling theories and the Generalized Rastall Theory

نویسنده [English]

  • Hamid Shabani
Physics Department, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

In this paper, the compatibility of the Dirac cosmological model which leads to gravitational theories with a varying gravitational coupling parameter in the context of the generalized Rastall theory has been studied. Moreover, in this scenario, the problem of the current accelerated expansion of the Universe has been considered. Two different cosmic fluids have been investigated. Generalized Polytropic matter, which leads to an observationally consistent model. Also, considering the generalized Chaplygin gas, it is shown that an astronomically consistent model cannot be obtained. Briefly speaking, we came to the result that the generalized Rastall theory is capable of being matched with the Dirac hypothesis leading to the present accelerated expansion of the Universe.

کلیدواژه‌ها [English]

  • Dirac hypothesis
  • Rastall theory
  • accelerated universe
  • modified gravity
[1] P.A.M. Dirac, The Cosmological Constants, Nature 139 (1937) 323-324. https://doi.org/10.1038/139323a0
[2] P.A.M. Dirac, A new basis for cosmology, Proceedings of the Royal Society of London A 165 (1938) 199. https://doi.org/10.1098/rspa.1938.0053
[3] P.A.M. Dirac, Physical Science and Philosophy, Nature 139 (1937) 1001-1002. https://doi.org/10.1038/1391001a0
[4] H. Weyl, Eine neue Erweiterung der Relativitätstheorie, Annalen der Physics, 59 (1919) 129. https://doi.org/10.1002/andp.19193641002
[5] F. Zwicky, On the Theory and Observation of Highly Collapsed Stars, Physical Review 55 (1939) 726. https://doi.org/10.1103/PhysRev.55.726
[6] A.S. Eddington, The Mathematical Theory of Relativity, Cambridge University Press, London, )1923). https://www.amazon.com/Mathematical-Theory-Relativity-S-Eddington/dp/0521091659
[7] J.D. Barrow, F.J. Tipler, The Anthropic Cosmological Principle, Oxford University Press, Oxford, (1986). https://www.amazon.com/Anthropic-Cosmological-Principle-Oxford-Paperbacks/dp/0192821474/
[8] S. Chandrasekhar, The Cosmological Constants, Nature 139 (1937) 757-758. https://doi.org/10.1038/139757b0
[9] D.S. Kothari, Cosmological and Atomic Constants, Nature 142 (1938) 354-355. https://doi.org/10.1038/142354b0
[10] K. Leszczyńska, M.P. Dąbrowski, T. Denkiewicz, Varying constants driven baryogenesis, The European Physical Journal C 79 (2019) 222. https://doi.org/10.1140/epjc/s10052-019-6744-1
[11] G.F.R. Ellis, R. Maartens, M.A.H. Maccallum, Relativistic cosmology, Cambridge University Press, UK, (2012). https://www.cambridge.org/ir/academic/subjects/physics/cosmology-relativity-and-gravitation/relativistic-cosmology?format=HB&isbn=9780521381154
[12] J.P. Uzan, The fundamental constants and their variation: observational and theoretical status, Review of Modern Physics 75 (2003) 403. https://doi.org/10.1103/RevModPhys.75.403
[13] J.P. Uzan, Varying Constants, Gravitation and Cosmology, Living Reviews in Relativity 14 (2011) 2. https://doi.org/10.12942/lrr-2011-2
[14] H. Moradpour, H. Shabani, A.H. Ziaie, Umesh Kumar Sharma, Non-minimal coupling inspires the Dirac cosmological model, The European Physical Journal Plus 136 (2021) 731. https://doi.org/10.1140/epjp/s13360-021-01713-4
[15] C. Brans, R.H. Dicke, Mach's Principle and a Relativistic Theory of Gravitation, Physics Review 124 (1961) 925. https://doi.org/10.1103/PhysRev.124.925
[16] R.H. Dicke, Mach's Principle and Invariance under Transformation of Units, Physics Review 125 (1962) 2163. https://doi.org/10.1103/PhysRev.125.2163
[17] R.H. Dicke, Principle of Equivalence and the Weak Interactions, Review of Modern Physics 29 (1957) 355. https://doi.org/10.1103/RevModPhys.29.355
[18] R.H. Dicke, Dirac's Cosmology and Mach's Principle, Nature 192 (1961) 440-441. https://doi.org/10.1038/192440a0
[19] P. Rastall, Generalization of the Einstein Theory, Physics Review D 6 (1972) 3357. https://doi.org/10.1103/PhysRevD.6.3357
[20] A.S. Al-Rawaf, O.M. Taha, A resolution of the cosmological age puzzle, Physics Letter B 366 (1996) 69. https://doi.org/10.1016/0370-2693(95)01145-5
[21] A.I. Arbab, Cosmological consequences of a built-in cosmological constant model, Journal of Cosmology and Astroparticle Physics 05 (2003) 008. https://doi.org/10.1088/1475-7516/2003/05/008
[22] A.M.M. Abdel-Rahman, M.H.A. Hashim, Gravitational lensing in a model with non-interacting matter and vacuum energies, Astrophysics and Space Science 298 (2005) 519. https://doi.org/10.1007/s10509-005-5839-3
[23] A.M.M. Abdel-Rahman, I.F. Riad, Flat Cosmology with Coupled Matter and Dark Energies, The Astronomical Journal, 134 (2007) 1931. https://doi.org/10.1086/521356
[24] H. Moradpour, A. Bonilla, E.M.C. Abreu, J.A. Neto, Accelerated cosmos in a nonextensive setup, Physical Review D 96 (2017) 123504. https://doi.org/10.1103/PhysRevD.96.123504
[25] R. Li et al., Constraining the Rastall parameters in static space–times with galaxy-scale strong gravitational lensing, Monthly Notices of the Royal Astronomical Society 486 (2019) 2407. https://doi.org/10.1093/mnras/stz967
[26] J.C. Fabris, R. Kerner, J. Tossa, Perturbative analysis of generalized Einstein's theories, International Journal of Modern Physics D 9 (2000) 111. https://doi.org/10.1142/S0218271800000116
[27] A.S. Al-Rawaf, O.M. Taha, Cosmology of general relativity without energy-momentum conservation, General Relativity and Gravitation 28 (1996) 935. https://doi.org/10.1007/BF02113090
[28] C.E.M. Batista, J.C. Fabris, M. Hamani Daouda, Testing Rastall's theory using matter power spectrum, Nuovo Cimento B 125 (2010) 957. http://dx.doi.org/10.1393/ncb/i2010-10895-1
[29] G.F. Silva, O.F. Piattella, J.C. Fabris, L. Casarini, T.O. Barbosa, Bouncing solutions in Rastall’s theory with a barotropic fluid, Gravitation and Cosmology 19 (2013) 156. https://doi.org/10.1134/S0202289313030109
[30] T.R.P. Caramês, M.H. Daouda, J.C. Fabris, A.M. Oliveira, O.F. Piattella, V. Strokov, The Brans–Dicke–Rastall theory, The European Physical Journal C 74 (2014) 3145. https://doi.org/10.1140/epjc/s10052-014-3145-3
[31] A.M. Oliveira, H.E.S. Velten, J.C. Fabris, L. Casarini, Neutron Stars in Rastall Gravity, Physical Review D 92 (2015) 044020. https://doi.org/10.1103/PhysRevD.92.044020
[32] A.M. Oliveira, H.E.S. Velten, J.C. Fabris, Non-trivial static, spherically symmetric vacuum solution in a non-conservative theory of gravity, Physical Review D 93 (2016) 124020. https://doi.org/10.1103/PhysRevD.93.124020
[33] K. Lin, W.-L. Qian, Neutral regular black hole solution in generalized Rastall gravity, Chinese Physics C 43 (2019) 083106. https://doi.org/10.1088/1674-1137/43/8/083106
[34] A.H. Ziaie, H. Shabani, S. Ghaffari, Effects of Rastall parameter on perturbation of dark sectors of the Universe, Modern Physics Letter A 36 (2019) 2150082. https://doi.org/10.1142/S0217732321500826
[35] H. Shabani, A.H. Ziaie, A connection between Rastall-type and f(R,T) gravities, Europhysics. Letter 129 (2020) 20004. https://doi.org/10.1209/0295-5075/129/20004
[36] H. Moradpour, Y. Heydarzade, F. Darabi, Ines G. Salako, A generalization to the Rastall theory and cosmic eras, The European Physical Journal C 77 (2017) 259.  https://doi.org/10.1140/epjc/s10052-017-4811-z
[37] D. Das, S. Dutta, S. Chakraborty, Cosmological consequences in the framework of generalized Rastall theory of gravity, The European Physical Journal C 78 (2018) 810.  https://doi.org/10.1140/epjc/s10052-018-6293-z
[38] A.H. Ziaie, Non-Singular gravitational collapse in generalized Rastall theory, Journal of Research on Many body Systems 10 (2020) 47-60.   https://dx.doi.org/10.22055/jrmbs.2020.15931
[39] H. Shabani, H. Moradpour, A.H. Ziaie, A dynamical system representation of generalized Rastall gravity, Physics of Dark Universe 36 (2022) 101047.   https://doi.org/10.1016/j.dark.2022.101047
[40] H. Moradpour, Y. Heydarzade, C. Corda, A.H. Ziaie, S. Ghaffari, Black hole solutions and Euler equation in Rastall and generalized Rastall theories of gravity, Modern Physics Letter 37 (2019) 1950304. https://doi.org/10.1142/S0217732319503048
[41] K. Lin, W.-L. Qian, Cosmic evolution of dark energy in a generalized Rastall gravity, The European Physical Journal C 80 (2020) 561. https://doi.org/10.1140/epjc/s10052-020-8116-2
[42] S. Maity, M. Biswas, U. Debnath, Analysis of entropy corrected holographic and new agegraphic dark energy models in generalized Rastall gravity, International Journal of Modern Physics D 35 (2020) 2050175. https://doi.org/10.1142/S0217751X20501754
[43] A. Sardar, U. Debnath, Cosmological consequences of Rényi, Sharma–Mittal holographic and new agegraphic dark energy models in generalized Rastall gravity, Modern Physics Letter A 36 (2021) 2150180. https://doi.org/10.1142/S0217732321501807
[44] H. Shabani, A.H. Ziaie, H. Moradpour, Einstein static universe and its stability in generalized Rastall gravity, Annuals of Physics 444 (2022) 169058. https://doi.org/10.1016/j.aop.2022.169058
[45] I. Noureen, S.A. Mardan, M. Azam, W. Shahzad, S. Khalid, Models of charged compact objects with generalized polytropic equation of state, The European Physical Journal C 79 (2019) 302. https://doi.org/10.1140/epjc/s10052-019-6806-4
[46] S.A. Mardan, M. Rehman, I. Noureen, R.N. Jamil, Impact of generalized polytropic equation of state on charged anisotropic polytropes, The European Physical Journal C 80 (2020) 119. https://doi.org/10.1140/epjc/s10052-020-7647-x
[47] N. Aghanim, et al., Planck 2018 results: VI. Cosmological parameters, Astronomy & Astrophysics 641 (2020) A6. https://doi.org/10.1051/0004-6361/201833910
[48] D. Muthukrishna, D. Parkinson, A cosmographic analysis of the transition to acceleration using SN-Ia and BAO, Journal of Cosmology and Astroparticle Physics 11 (2016) 052. https://doi.org/10.1088/1475-7516/2016/11/052
[49] N. Rania, D. Jainb, S. Mahajana , A. Mukherjeea, N. Pires, Transition redshift: new constraints from parametric and nonparametric methods, Journal of Cosmology and Astroparticle Physics 12 (2015) 045. https://doi.org/10.1088/1475-7516/2015/12/045
[50] O. Farooq et al., Hubble Parameter Measurement Constraints on the Redshift of the Deceleration-Acceleration Transition, Dynamical Dark Energy and Space Curvature, Astrophysical Journal 835 (2017) 26. https://doi.org/10.3847/1538-4357/835/1/26
[51] R. Amanullah et al., Spectra and Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation, Astrophysical Journal 716 (2010) 712. https://doi.org/10.1088/0004-637X/716/1/712
[52] N. Bilić, G.B. Tupper, R.D. Viollier, Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas, Physics Letter B 535 (2002) 17. https://doi.org/10.1016/S0370-2693(02)01716-1
[53] A.H. Ziaie, H. Moradpour, H. Shabani, Structure formation in generalized Rastall gravity, The European Physical Journal Plus 135 (2020) 916. https://doi.org/10.1140/epjp/s13360-020-00927-2
[54] K. Tomita, Formation of Gravitationally Bound Primordial Gas Clouds, Progress in Theoretical Physics 42 (1969) 9. https://doi.org/10.1143/PTP.42.9
[55]https://github.com/CosmologyTaskForce/CoChiSquare/tree/alpha. doi:10.5281/zenodo.13197
[56] http://www.wolfram.com
[58] D. Scolnic et al, The Pantheon+ Analysis: The Full Dataset and Light-Curve Release, arXiv: 2112.03863.
[59] B.A. Basset, R. Hlozek, Baryon acoustic oscillations, arXiv: 0910.5224.
[60] G. Hindshaw, et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophysical Journal Supply 208 (2013) 19. https://doi.org/10.1088/0067-0049/208/2/19