بررسی نظری ویژگی‌های الکترونی و ترموالکتریکی نانو ماده پنج‌ضلعی دوبعدی BeP2 توسط نظریه تابعی چگالی

نوع مقاله : مقاله پژوهشی کامل

نویسنده

گروه فیزیک، دانشکده علوم، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

در این پژوهش، با استفاده از نظریة تابعی چگالی و معادلة ترابردی نیمه کلاسیکی بولتزمن، ویژگی‌های الکترونی و ترموالکتریکی نانو مادة پنج‌ضلعی دوبعدی BeP2، مورد مطالعه قرار گرفته است. نتایج نشان می‌دهد که نانو مادة پنج‌ضلعی دوبعدی BeP2 یک نیم‌رسانا با گاف نواری غیر مستقیم و با مقدار 28/0 الکترون‌ولت می‌باشد. مطالعة ترموالکتریک تک‌لایة دوبعدی BeP2، عملکرد خوب ترموالکتریکی را با ضریب ارزشی بالا را نمایش می‌دهد، به‌طوری‌که نانو ماده BeP2 یک نیم‌رسانای نوع p است و مقدار ضریب سیبک و ضریب ارزشی در دمای اتاق به‌ترتیب، V/K308µ و 9/0 به‌دست آمدند. انتظار می‌رود که در آینده، نانو مادة پنج ضلعی BeP2 نامزد خوبی برای مواد ترموالکتریک با کارایی بالا باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Theoretical investigation of electronic and thermoelectric properties of 2D pentagonal nanomaterial BeP2 by density functional theory

نویسنده [English]

  • Mojtaba Ashhadi
Department of Physics, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

In this study, using the density functional theory and the semiclassical Boltzmann transport equation, the electronic and thermoelectric properties of two-dimensional (2D) pentagonal nanomaterial BeP2 are calculated. According to our results, 2D pentagonal nanomaterial BeP2 indicates an indirect band gap semiconductor with the value of 0.28 eV. The thermoelectric study shows an excellent thermoelectric performance of the 2D BeP2 monolayer with a high figure of merit, so that, the nanomaterial of BeP2 is a p-type semiconductor, and Seebeck coefficient and figure of merit at room temperature were obtained as 308 µV/K and 0.9, respectively. It is expected that in the future, the pentagonal nanomaterial BeP2 will be a perfect candidate for high-performance thermoelectric materials.

کلیدواژه‌ها [English]

  • 2D pentagonal nanomaterial BeP2
  • Electronic and thermoelectric properties
  • Density functional theory
  • Boltzmann transport equation
[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669. https://doi.org /10.1126/science.1102896
[2] H. Lu, S.-D. Li, Two-dimensional carbon allotropes from graphene to graphyne, Journal of Materials Chemistry C 1 (2013) 3677-3680. https://doi.org/10.1039/C3TC30302K
[3] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphene like two-dimensional silicon, Physical Review Letters 108 (2012) 155501. https://doi.org/10.1103/PhysRevLett.108.155501
[4] M.E. Dávila, L. Xian, S. Cahangirov, A. Rubio, G. LeLay, Germanene: a novel twodimensional germanium allotrope akin to graphene and silicene, New Journal of Physics 16 (2014) 095002. https://doi.org/10.1088/1367-2630/16/9/095002
[5] S. Saxena, R.P. Chaudhary, S. Shukla, Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin, Scientific Reports 6 (2016) 31073. https://doi.org/10.1038/srep31073
[6] C. Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties, Advanced Materials 21 (2009) 2889. https://doi.org/10.1002/adma.200900323
[7] S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, P. Jena, Penta-graphene: A new carbon allotrope, Proceedings of the National Academy of Sciences 112 8 (2015) 2372-2377. https://doi.org/10.1073/pnas.1416591112
[8] M. Yagmurcukardes, H. Sahin, J. Kang, E. Torun, F.M. Peeters, R.T. Senger, Pentagonal monolayer crystals of carbon, boron nitride, and silver azide, Journal of Applied Physics 118 10 (2015) 104303(6). https://doi.org/10.1063/1.4930086
[9] C. Wang, W. Cui, J. Shao, X. Zhu, X. Lu, Exploration on stability, aromaticity, and potential energy surface of planar BnC2(n= 3–8), Computational and Theoretical Chemistry 1006 (2013) 19-30. http://dx.doi.org/10.1016/j.comptc.2012.12.001
[10] Y. Shen, Q. Wang, Pentagon-based 2D materials: Classification, properties and applications, Physics Reports 964 (2022) 1-42. https://doi.org/10.1016/j.physrep.2022.03.003
[11] Z. Azarmi, M. Naseri, S. Parsamehr, Penta-BeP2 monolayer: A new 2D beryllium phosphate with a narrow band gap, Chemical Physics Letters 728 (2019) 136-141. https://doi.org/10.1016/j.cplett.2019.05.006
[12] P. Reddy, S.Y. Jang, R.A. Segalman, A. Majumdar, Thermoelectricity in molecular junctions, Science 315 (2007) 1568-1571. https://doi.org/10.1126/science.1137149
[13] Y. Dubi, M. Di Ventra, Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions, Reviews of Modern Physics 83 (2011) 131-155. https://doi.org/10.1103/RevModPhys.83.131
[14] P. Giannozzi, et al., A modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter 21 (2009) 395502-395521. https://doi.org/doi:10.1088/0953-8984/21/39/395502
[15] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77 18 (1996) 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
[16] G.K.H. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Computer Physics Communications 175 (2006) 67–71. https://doi.org/10.1016/j.cpc.2006.03.007
[17] N.F. Hinsche, et al., Thermoelectric transport in Bi2Te3/Sb2Te3 superlattices, Physical Review B 86 (2012) 085323(13). https://doi.org/10.1103/PhysRevB.86.085323
[18] G. Shi, E. Kioupakis, Quasiparticle band structures and thermoelectric transport properties of p-type SnSe, Journal of Applied Physics 117 (2015) 065103(10). https://doi.org/10.1063/1.4907805
[19] H. Shin, S. Kang, J. Koo, H. Lee, J. Kim, Y. Kwon, Cohesion energetics of carbon allotropes: Quantum Monte Carlo study, The Journal of Chemical Physics 140 (2014) 114702. https://doi.org/10.1063/1.4867544
[20] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphene like two-dimensional silicon, Physical Review Letters 108 (2012) 155501. https://doi.org/10.1103/PhysRevLett.108.155501
[21] S.H. Mir, V.K. Yada, J.K. Singh, Boron–Carbon–Nitride Sheet as a Novel Surface for Biological Applications: Insights from Density Functional Theory, ACS Omega 4 (2019) 3732–3738. https://doi.org/10.1021/acsomega.8b03454
[22] Y. Ding, Y. Wang, Density Functional Theory Study of the Silicene-like SiX and XSi3 (X = B, C, N, Al, P) Honeycomb Lattices: The Various Buckled Structures and Versatile Electronic Properties, The Journal of Physical Chemistry C 117 (2013) 18266-18278. https://doi.org/10.1021/jp407666m
[23] M. Topsakal, S. Cahangirov, S. Ciraci, The response of mechanical and electronic properties of graphane to the elastic strain, Applied Physics Letters 96 (2010) 091912(3). https://doi.org/10.1063/1.3353968
[24] J. Kang, J. Li, F. Wu, S.-S. Li, J.-B. Xia, Elastic, electronic, and optical properties of two-dimensional graphyne sheet, The Journal of Physical Chemistry C 115 (42) (2011) 20466–20470. https://doi.org/10.1021/jp206751m
[25] J.J. Gong, A.J. Hong, J. Shuai, L. Li, Z.B. Yan, Z.F. Ren, J.-M. Liu, Investigation of the bipolar effect in the thermoelectric material CaMg2Bi2 using a first-principles study, Physical Chemistry Chemical Physics 18 (2016)16566-16574. https://doi.org/10.1039/C6CP02057G
[26] S. Lin, W. Li, Z. Chen, J. Shen, B. Ge, Y. Pei, Tellurium as a high-performance elemental thermoelectric, Nature Communications 7 (2016) 10287 (6). https://doi.org/10.1038/ncomms10287
[27] G. Ding, G. Gao, K. Yao, High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds, Scientific Reports 5 (2015) 9567(7). https://doi.org/10.1038/srep09567
[28] S. Yabuuchi, M. Okamoto, A. Nishide, Y. Kurosaki, & J. Hayakawa, Large Seebeck Coefficients of Fe2TiSn and Fe2TiSi: First-Principles Study, Applied Physics Express 6 (2013) 025504(3). https://doi.org/10.7567/APEX.6.025504
[29] L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature 508 (2014) 373. https://doi.org/10.1038/nature13184
[30] N. Gaonkar, R.G. Vaidya, Phonon mode-dependent lattice thermal conductivity of nanoscale black phosphorus, Physics Letters A 384 (2020) 126912. https://doi.org/10.1016/j.physleta.2020.126912
[31] D.L. Nika, E.P. Pokatilov, A.S. Askerov, A.A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering, Physical Review B 79 (2009) 155413. https://doi.org/10.1103/PhysRevB.79.155413
[32] S. Ouardi, G.H. Fecher, B. Balke, X. Kozina, G. Stryganyuk, C. Felser, Electronic transport properties of electron- and hole-doped semiconducting C1b Heusler compounds: NiTi1−xMxSn (M=Sc, V), Physical Review B 82 (2010) 085108(9). https://doi.org/10.1103/PhysRevB.82.085108