[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669. https://doi.org /10.1126/science.1102896
[3] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphene like two-dimensional silicon, Physical Review Letters 108 (2012) 155501. https://doi.org/10.1103/PhysRevLett.108.155501
[4] M.E. Dávila, L. Xian, S. Cahangirov, A. Rubio, G. LeLay, Germanene: a novel twodimensional germanium allotrope akin to graphene and silicene, New Journal of Physics 16 (2014) 095002. https://doi.org/10.1088/1367-2630/16/9/095002
[5] S. Saxena, R.P. Chaudhary, S. Shukla, Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin, Scientific Reports 6 (2016) 31073. https://doi.org/10.1038/srep31073
[6] C. Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties, Advanced Materials 21 (2009) 2889. https://doi.org/10.1002/adma.200900323
[7] S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, P. Jena, Penta-graphene: A new carbon allotrope, Proceedings of the National Academy of Sciences 112 8 (2015) 2372-2377. https://doi.org/10.1073/pnas.1416591112
[8] M. Yagmurcukardes, H. Sahin, J. Kang, E. Torun, F.M. Peeters, R.T. Senger, Pentagonal monolayer crystals of carbon, boron nitride, and silver azide, Journal of Applied Physics 118 10 (2015) 104303(6). https://doi.org/10.1063/1.4930086
[9] C. Wang, W. Cui, J. Shao, X. Zhu, X. Lu, Exploration on stability, aromaticity, and potential energy surface of planar BnC2(n= 3–8), Computational and Theoretical Chemistry 1006 (2013) 19-30. http://dx.doi.org/10.1016/j.comptc.2012.12.001
[11] Z. Azarmi, M. Naseri, S. Parsamehr, Penta-BeP2 monolayer: A new 2D beryllium phosphate with a narrow band gap, Chemical Physics Letters 728 (2019) 136-141. https://doi.org/10.1016/j.cplett.2019.05.006
[18] G. Shi, E. Kioupakis, Quasiparticle band structures and thermoelectric transport properties of p-type SnSe, Journal of Applied Physics 117 (2015) 065103(10). https://doi.org/10.1063/1.4907805
[19] H. Shin, S. Kang, J. Koo, H. Lee, J. Kim, Y. Kwon, Cohesion energetics of carbon allotropes: Quantum Monte Carlo study, The Journal of Chemical Physics 140 (2014) 114702. https://doi.org/10.1063/1.4867544
[20] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphene like two-dimensional silicon, Physical Review Letters 108 (2012) 155501. https://doi.org/10.1103/PhysRevLett.108.155501
[21] S.H. Mir, V.K. Yada, J.K. Singh, Boron–Carbon–Nitride Sheet as a Novel Surface for Biological Applications: Insights from Density Functional Theory, ACS Omega 4 (2019) 3732–3738. https://doi.org/10.1021/acsomega.8b03454
[22] Y. Ding, Y. Wang, Density Functional Theory Study of the Silicene-like SiX and XSi3 (X = B, C, N, Al, P) Honeycomb Lattices: The Various Buckled Structures and Versatile Electronic Properties, The Journal of Physical Chemistry C 117 (2013) 18266-18278. https://doi.org/10.1021/jp407666m
[23] M. Topsakal, S. Cahangirov, S. Ciraci, The response of mechanical and electronic properties of graphane to the elastic strain, Applied Physics Letters 96 (2010) 091912(3). https://doi.org/10.1063/1.3353968
[24] J. Kang, J. Li, F. Wu, S.-S. Li, J.-B. Xia, Elastic, electronic, and optical properties of two-dimensional graphyne sheet, The Journal of Physical Chemistry C 115 (42) (2011) 20466–20470. https://doi.org/10.1021/jp206751m
[25] J.J. Gong, A.J. Hong, J. Shuai, L. Li, Z.B. Yan, Z.F. Ren, J.-M. Liu, Investigation of the bipolar effect in the thermoelectric material CaMg2Bi2 using a first-principles study, Physical Chemistry Chemical Physics 18 (2016)16566-16574. https://doi.org/10.1039/C6CP02057G
[26] S. Lin, W. Li, Z. Chen, J. Shen, B. Ge, Y. Pei, Tellurium as a high-performance elemental thermoelectric, Nature Communications 7 (2016) 10287 (6). https://doi.org/10.1038/ncomms10287
[27] G. Ding, G. Gao, K. Yao, High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds, Scientific Reports 5 (2015) 9567(7). https://doi.org/10.1038/srep09567
[28] S. Yabuuchi, M. Okamoto, A. Nishide, Y. Kurosaki, & J. Hayakawa, Large Seebeck Coefficients of Fe2TiSn and Fe2TiSi: First-Principles Study, Applied Physics Express 6 (2013) 025504(3). https://doi.org/10.7567/APEX.6.025504
[29] L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature 508 (2014) 373. https://doi.org/10.1038/nature13184
[31] D.L. Nika, E.P. Pokatilov, A.S. Askerov, A.A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering, Physical Review B 79 (2009) 155413. https://doi.org/10.1103/PhysRevB.79.155413
[32] S. Ouardi, G.H. Fecher, B. Balke, X. Kozina, G. Stryganyuk, C. Felser, Electronic transport properties of electron- and hole-doped semiconducting C1b Heusler compounds: NiTi1−xMxSn (M=Sc, V), Physical Review B 82 (2010) 085108(9). https://doi.org/10.1103/PhysRevB.82.085108