All Optical frequency switching of cavity solitons based on localized modulation

Document Type : Full length research Paper

Authors

1 Photonics Group, Research Institute for Applied Physics and Astronomy (RIAPA), University of Tabriz, Tabriz, Iran

2 Department of Physics, University of Guilan, P.O. Box 41335-1914 Rasht, Iran

Abstract

Local sinusoidal modulation of cavity solitons in an injected Vertical-Cavity Surface-Emitting Laser1 above the laser threshold is numerically investigated and their synchronization in a unidirectional interaction regime is discussed. An all-optical frequency switch based on the synchronization of cavity solitons in this regime is proposed and its performance is quantified by two important parameters: 1) external force threshold and 2) response time of the switching. Our study shows that cavity solitons can be used as all-optical frequency switches with a speed that meets the requirements of optical operations.

Keywords

Main Subjects


[1]        J.T. Wolfson, R.W. Boyd, Nonlinear Optics, Third Edition, 3rd ed., USA: Academic Press, Inc.,Orlando, FL, (2008).
[2]        D.A.B. Miller, Device requirements for digital optical processing 10257 (1990 68–76. https://doi.org/10.1117/12.2283569
[3]        D.A.B. Miller, Are optical transistors the logical next step?, Nature Photonics 4 1 (2010) 3–5. https://www.nature.com/articles/nphoton.2009.240
[4]        S. Barland et al., Cavity solitons as pixels in semiconductor microcavities, Nature 419 6908 (2002) 699–702. https://www.nature.com/articles/nature01049
[5]        E. Taghavi, M. Eslami, R. Kheradmand, Coherent and incoherent switching of cavity solitons in an optically injected VCSEL, Journal of Optics 21 1 (2019) 015402. https://iopscience.iop.org/article/10.1088/2040-8986/aaf2ab/meta
[6]        M. Eslami, S.Z. Gandomani, F. Prati, H. Tajalli R. Kheradmand, Ultra low-energy switch based on a cavity soliton laser with pump modulation, Journal of Optics 19 1 (2017) 015502. https://iopscience.iop.org/article/10.1088/2040-8986/19/1/015502/meta
[7]        M. Eslami, R. Kheradmand, P. Bahari, H. Tajalli, Twin laser cavity solitons in a VCSEL with saturable absorber, European Physical Journal D 69 9 (2015). https://link.springer.com/article/10.1140/epjd/e2015-60261-x
[8]        F. Prati, L.A. Lugiato, G. Tissoni, M. Brambilla, Cavity soliton billiards, Physical Review A atomic, molecular, and optical physics  84 5 (2011) 1–6. https://doi.org/10.1103/PhysRevA.84.053852
[9]        M. Turconi, F. Prati, S. Barland, G. Tissoni, Excitable solitons in a semiconductor laser with a saturable absorber, Physical Review A atomic, molecular, and optical physics 92 5 (2015) 1–7. https://doi.org/10.1103/PhysRevA.92.053855
[10]      S. Ahmadipanah, R. Kheradmand, F. Prati, Enhanced Resonance Frequency and Modulation Bandwidth in a Cavity Soliton Laser, IEEE Photonics Technology Letters 26 10 (2014) 1038–1041. https://doi.org/10.1109/LPT.2014.2312735
[11]      S. Ahmadipanah, R. Kheradmand, F. Prati, Scaling law for dynamical hysteresis of cavity solitons, Journal of Optics 18 2 (2016) 025504. https://iopscience.iop.org/article/10.1088/2040-8978/18/2/025504/meta
[12]      M. Eslami, R. Kheradmand, All optical logic gates based on cavity solitons with nonlinear gain, Optical Review 19 4 (2012) 242–246. https://link.springer.com/article/10.1007/s10043-012-0037-3
[13]      M. Rowley et al., Self-emergence of robust solitons in a microcavity, Nature 608 7922 Aug. (2022) 303–309. https://www.nature.com/articles/s41586-022-04957-x
[14]      M. Nie, Y. Xie, B. Li, S.W. Huang, Photonic frequency microcombs based on dissipative Kerr and quadratic cavity solitons, Progress in Quantum Electronics 86 (2022) 100437. https://doi.org/10.1016/j.pquantelec.2022.100437
[15]      G.L. Oppo, D. Grant, M. Eslami, Temporal cavity solitons and frequency combs via quantum interference, Physical Review A 105 1 (2022) L011501. https://doi.org/10.1103/PhysRevA.105.L011501
[16]      H. Bao et al., Laser cavity-soliton microcombs, Nature Photonics 13 6 (2019) 384–389. https://www.nature.com/articles/s41566-019-0379-5
[17]      S.R. Anbardan, R. Kheradmand, F. Prati, Cavity solitons synchronization, Journal of Nanophotonics 13 1 (2018) 12502. https://doi.org/10.1117/1.JNP.13.012502
[18]      X. Hachair et al., Cavity solitons in a driven VCSEL above threshold, IEEE Journal of Selected Topics in Quantum Electronics 12 3 May (2006) 339–350. https://doi.org/10.1109/JSTQE.2006.872711
[19]      M. Eslami, R. Kheradmand, G. Hashemvand, The effect of nonlinear gain on the characteristics of an optically injected VCSEL and cavity solitons, Optical and Quantum Electronics 46 2 (2014) 319–329. https://link.springer.com/article/10.1007/s11082-013-9762-5
[20]      M. Eslami, R. Kheradmand, K.M. Aghdami, Complex behavior of vertical cavity surface emitting lasers with optical injection, Physica Scripta, T157 T157 (2013) 14038. https://iopscience.iop.org/article/10.1088/0031-8949/2013/T157/014038
[21]      A. Pikovsky, M. Rosenblum, Synchronization: A general phenomenon in an oscillatory world, Nova Acta Leopoldina NF 88 332 (2003) 255–268.
[22]      S.R. Anbardan, C. Rimoldi, R. Kheradmand, G. Tissoni, F. Prati, Exponentially decaying interaction potential of cavity solitons, Physical Review E 97 3 (2018) 1–5. https://doi.org/10.1103/PhysRevE.97.032208