[3] D.B. Graves, The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology, Journal of Physics D: Applied Physics 45 (2012) 263001. https://doi.org/10.1088/0022-3727/45/26/263001
[4] R. Akolkar, R.M. Sankaran, Charge transfer processes at the interface between plasmas and liquids, Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 31 (2013) 050811. https://doi.org/10.1116/1.4810786
[5] J. Foster, B.S. Sommers, S.N. Gucker, I.M. Blankson, G. Adamovsky, Perspectives on the interaction of plasmas with liquid water for water purification, IEEE Transactions on Plasma Science 40 (2012) 1311-1323. http://dx.doi.org/10.1109/TPS.2011.2180028
[6] A. Güntherschulze, H. Betz. Electrolytic Capacitors 2nd ed., Cram: Berlin, Germany, (1952).
[7] R.A. Davies, A. Hickling, 686. Glow-discharge electrolysis. Part I. The anodic formation of hydrogen peroxide in inert electrolytes, Journal of the Chemical Society (Resumed) (1952) 3595-3602. https://doi.org/10.1039/JR9520003595
[8] A. Hickling, J.K. Linacre, Glow-discharge electrolysis. Part II. The anodic oxidation of ferrous sulphate, Journal of the Chemical Society (Resumed) (1954) 711-720. https://doi.org/10.1039/JR9540000711
[9] A. Hickling, G.R. Newns, 1024. Glow-discharge electrolysis. Part IV. The formation of hydrazine in liquid ammonia, Journal of the Chemical Society (Resumed) (1961) 5177-5185. https://doi.org/10.1039/JR9610005177
[10] A. Hickling, G.R. Newns, 1025. Glow-discharge electrolysis. Part V. The contact glow-discharge electrolysis of liquid ammonia, Journal of the Chemical Society (Resumed) (1961) 5186-5191. https://doi.org/10.1039/JR9610005186
[11] A.R. Denaro, A. Hickling, Glow‐Discharge Electrolysis in Aqueous Solutions, Journal of The Electrochemical Society 105 (1958) 265. https://doi.org/10.1149/1.2428821
[14] A. Hickling, Modern Aspects of Electrochemistry No. 6, Springer, Boston, MA, (1971).
[15] E.E. Kunhardt, Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas, IEEE Transactions on Plasma Science 28 (2000) 189-200. https://doi.org/10.1109/27.842901
[17] C.F. Schönbein, Beobachtungen über den bei der Elektrolysation des Wassers und dem Ausströmen der gewöhnliehen Elektricität aus Spitzen sich entwikkelnden Geruch. Annalen der Physik 126 (1840) 616-635. https://doi.org/10.1002/andp.18401260804
[18] D. Delgado, G. Hefter, M. Minakshi, Alternative Energies, Springer Berlin Heidelberg, (2013).
[19] J. Chauvin, F. Judée, M. Yousfi, P. Vicendo, N. Merbahi, Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet, Scientific Reports 7 (2017) 4562. https://doi.org/10.1038/s41598-017-04650-4
[20] Y. Gorbanev, A. Privat-Maldonado, A. Bogaerts, Analysis of short-lived reactive species in plasma–air–water systems: The dos and the do nots, Analytical Chemistry 90 (2018) 13151–13158. https://doi.org/10.1021/acs.analchem.8b03336
[21] P. Lu, D. Boehm, P. Bourke, P.J. Cullen, Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges, Plasma Processes and Polymers 14 (2017) 1600207. https://doi.org/10.1002/ppap.201600207
[23] D.W. Kim, B. Lee, D.W. Park, Anodizing behavior of copper by plasma electrolysis in deionized water as a sole electrolyte, Journal of The Electrochemical Society 166 (2019) C3200-C3206. http://dx.doi.org/10.1149/2.0241911jes
[25] J. Patel, M.J. Keshvani, Study of plasma–water interactions: effect of plasma electrons and production of hydrogen peroxide, Russian Journal of Physical Chemistry A 95 (2021) 2691–2698.
[26] R. Zhou, et al, Plasma activated water (PAW): generation, origin of reactive species and biological applications, Journal of Physics D: Applied Physics 53 (2020) 303001. https://doi.org/10.1088/1361-6463/ab81cf
[27] D.T. Elg, H.E. Delgado, D.C. Martin, R.M. Sankaran, P. Rumbach, D.M. Bartels, D.B. Go, Recent advances in understanding the role of solvated electrons at the plasma-liquid interface of solution-based gas discharges, Spectrochimica Acta Part B: Atomic Spectroscopy 186 (2021) 106307. https://doi.org/10.1016/j.sab.2021.106307
[28] F. Tochikubo, N. Shirai, S. Uchida, Liquid-phase reactions induced by atmospheric pressure glow discharge with liquid electrode, Journal of Physics Conference Series 565 (2014) 012010. https://doi.org/10.1088/1742-6596/565/1/012010
[29] S. Grimnes, Ø.G. Martinsen, Bioimpedance and Bioelectricity Basics (Third Edition), Academic Press, (2015).
[30] R. Zhou, R. Zhou, K. Prasad, Z. Fang, R. Speight, K. Bazaka, K.(K.) Ostrikov. Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite, Green Chemistry 20 (2018) 5276-5284. https://doi.org/10.1039/C8GC02800A
[32] Z. Machala, B. Tarabová, D. Sersenová, M. Janda, K. Hensel, Chemical and antibacterial effects of plasma activated water: correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions, Journal of Physics D: Applied Physics 52 (2019) 034002. https://doi.org/10.1088/1361-6463/aae807
[34] B. Farawan, I. Darojatin, N. Saksono, Simultaneous degradation of phenol-Cr(VI) wastewater on air injection plasma electrolysis using titanium anode, Chemical Engineering and Processing-Process Intensification 172 (2022) 108769.https://doi.org/10.1016/j.cep.2021.108769