شبیه‌سازی دینامیک مولکولی جذب مولکول‌های گازهای سمی CO، CO2 و NH3 توسط لایه و نانولولة Ti2C

نوع مقاله : مقاله پژوهشی کامل

نویسنده

گروه آموزشی فیزیک، دانشکده علوم پایه، دانشگاه لرستان، لرستان، خرم آباد، ایران

چکیده

در این مطالعه، با استفاده از کد محاسباتی دینامیک مولکولی LAMMPS به‌شبیه‌سازی جذب مولکول‌های گازهای سمی CO، CO2 و NH3 توسط لایه و نانولولة Ti2C، که در دسته مواد مکسین‌ها قرار می‌گیرند، پرداخته شد. نتایج نشان داد که نانولولة Ti2C حساسیت بالاتری به هر سه نوع گاز سمی، نسبت به لایة آن، از خود نشان می‌دهد، همچنین این نانولوله، بالاترین میزان انتخاب پذیری و حساسیت را به‌جذب مولکول‌های گاز CO نسبت به بقیه گازهای مورد مطالعه از خود نشان می‌دهد. بنابراین، ابعاد ساختار تأثیر اساسی بر میزان حساسیت و گزینش پذیری ساختار به‌عنوان حسگر گاز دارد. نتایج این مطالعه برای مطالعات تجربی و محاسباتی در زمینة حسگرهای گازی در دمای محیط مفید خواهد بود. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Molecular dynamics simulation of adsorption of toxic gas molecules CO, CO2 and NH3 by Ti2C layer and nanotube

نویسنده [English]

  • maryam malmir
Department of Physics, Faculty of Basic Science, Lorestan University, Khorramabad, Lorestan, Iran
چکیده [English]

In this study, the LAMMPS molecular dynamics calculation code is used for the first time to simulate the absorption of toxic gas molecules, CO, CO2 and NH3 by Ti2C monolayer and nanotube, classified as Maxene materials. The results show that the Ti2C nanotube exhibits higher sensitivity to the three toxic gases than its layer. This nanotube has the highest selectivity and sensitivity for absorbing of CO molecules. The results demonstrated that the dimension of the structure has an essential effect on the amount of sensitivity and selectivity of the structure as a gas sensor. The results of this study will be helpful for experimental and computational studies in the field of gas sensors at room temperature.

کلیدواژه‌ها [English]

  • Molecular dynamics simulation
  • Gas sensors
  • CO gas
  • CO2 gas
  • NH3 gas
  • Ti2C layer
  • Ti2C nanotube
[1] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2, Advanced materials 23 37 (2011) 4248-4253. https://doi.org/10.1002/adma.201102306
[2] Y. Gogotsi, B. Anasori, The rise of MXenes, ACS Publications (2019) 8491-8494. https://doi.org/10.1021/acsnano.9b06394
[3] J. Janata, Chemical sensors, Analytical chemistry 64 12 (1992) 196-219. https://doi.org/10.1021/ac00036a012
[4] E. Lee, D. Lee, J. Yoon, Y. Yin, Y.N. Lee, S. Uprety, Y.S. Yoon, D.-J. Kim, Enhanced gas-sensing performance of GO/TiO2 composite by photocatalysis, Sensors 18 10 (2018) 3334. https://doi.org/10.3390/s18103334
[5] E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi, D.J. Kim, Room temperature gas sensing of two-dimensional titanium carbide (MXene), ACS applied materials & interfaces 9 42 (2017) 37184-37190. https://doi.org/10.1021/acsami.7b11055
[6] W.Y. Chen, X. Jiang, S.N. Lai, D. Peroulis, L. Stanciu, Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds, Nature communications 11 1 (2020) 1-10. https://doi.org/10.1038/s41467-020-15092-4
[7] S.H. Lee, W. Eom, H. Shin, R.B. Ambade, J.H. Bang, H.W. Kim, T.H. Han, Room-Temperature, Highly Durable Ti₃C₂Tₓ MXene/Graphene Hybrid Fibers for NH₃ Gas Sensing,  (2020). https://doi.org/10.1021/acsami.9b21765
[8] X.f. Yu, Y.C. Li, J.B. Cheng, Z.B. Liu, Q.Z. Li, W.Z. Li, X. Yang, B. Xiao, Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity, ACS applied materials & interfaces 7 24 (2015) 13707-13713. https://doi.org/10.1021/acsami.5b03737
[9] Y. Wang, S. Ma, L. Wang, Z. Jiao, A novel highly selective and sensitive NH3 gas sensor based on monolayer Hf2CO2, Applied Surface Science 492 (2019) 116-124. https://doi.org/10.1016/j.apsusc.2019.06.212
[10] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of computational physics 117 1 (1995) 1-19. https://doi.org/10.1006/jcph.1995.1039
[11] R. Rostamoghli, M. Vakili, A. Banaei, E. Pourbasheer, k. Jalalierad, Applying the B12N12 nanoparticle as the CO, CO2, H2O and NH3 sensor, Chemical Review and Letters 1 1 (2018) 31-6. doi: 10.22034/crl.2018.85214
[12] HR. Jappor, SA. Khudair, Electronic properties of adsorption of CO, CO2, NH3, NO, NO2 and SO2 on nitrogen doped graphene for gas sensor applications, Sensor Letters 15 5 (2017) 432-9. https://doi.org/10.1166/sl.2017.3819
[13] H. Oymak, Ş. Erkoç, Titanium coverage on a single-wall carbon nanotube: molecular dynamics simulations, Chemical physics 300 (1-3) (2004) 277-283. https://doi.org/10.1016/j.chemphys.2004.02.013
[14] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: a generic force field for molecular simulations, Journal of Physical chemistry 94 26 (1990) 8897-8909. https://doi.org/10.1021/j100389a010
[15] S. Pałucha, Z. Gburski, J. Biesiada, A molecular dynamics study of fullerene–carbon monoxide mixture, Journal of molecular structure 704 (1-3) (2004) 269-273. https://doi.org/10.1016/j.molstruc.2004.02.044
[16] H.M. Stowe, G.S. Hwang, Molecular insights into the enhanced rate of CO2 absorption to produce bicarbonate in aqueous 2-amino-2-methyl-1-propanol, Physical Chemistry Chemical Physics 19 47 (2017) 32116-32124. https://doi.org/10.1039/C7CP05580C
[17] E. Iskrenova, S. Patnaik, Solvent effects in the thermal decomposition reaction of ammonium carbamate: A computational molecular dynamics study of the relative solubilities of CO2 and NH3 in water, ethylene glycol, and their mixtures, International Journal of Heat and Mass Transfer 100 (2016) 224-230. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.050
[18] B. Axilrod, E. Teller, Interaction of the van der Waals type between three atoms, The Journal of Chemical Physics 11 6 (1943) 299-300. https://doi.org/10.1063/1.1723844
[19] A.N. Enyashin, A.L. Ivanovskii, Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes, Computational and Theoretical Chemistry 989 (2012) 27-32. https://doi.org/10.1016/j.comptc.2012.02.034