[1] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2, Advanced materials 23 37 (2011) 4248-4253. https://doi.org/10.1002/adma.201102306
[2] Y. Gogotsi, B. Anasori, The rise of MXenes, ACS Publications (2019) 8491-8494. https://doi.org/10.1021/acsnano.9b06394
[4] E. Lee, D. Lee, J. Yoon, Y. Yin, Y.N. Lee, S. Uprety, Y.S. Yoon, D.-J. Kim, Enhanced gas-sensing performance of GO/TiO2 composite by photocatalysis, Sensors 18 10 (2018) 3334. https://doi.org/10.3390/s18103334
[5] E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi, D.J. Kim, Room temperature gas sensing of two-dimensional titanium carbide (MXene), ACS applied materials & interfaces 9 42 (2017) 37184-37190. https://doi.org/10.1021/acsami.7b11055
[6] W.Y. Chen, X. Jiang, S.N. Lai, D. Peroulis, L. Stanciu, Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds, Nature communications 11 1 (2020) 1-10. https://doi.org/10.1038/s41467-020-15092-4
[7] S.H. Lee, W. Eom, H. Shin, R.B. Ambade, J.H. Bang, H.W. Kim, T.H. Han, Room-Temperature, Highly Durable Ti₃C₂Tₓ MXene/Graphene Hybrid Fibers for NH₃ Gas Sensing, (2020). https://doi.org/10.1021/acsami.9b21765
[8] X.f. Yu, Y.C. Li, J.B. Cheng, Z.B. Liu, Q.Z. Li, W.Z. Li, X. Yang, B. Xiao, Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity, ACS applied materials & interfaces 7 24 (2015) 13707-13713. https://doi.org/10.1021/acsami.5b03737
[9] Y. Wang, S. Ma, L. Wang, Z. Jiao, A novel highly selective and sensitive NH3 gas sensor based on monolayer Hf2CO2, Applied Surface Science 492 (2019) 116-124. https://doi.org/10.1016/j.apsusc.2019.06.212
[11] R. Rostamoghli, M. Vakili, A. Banaei, E. Pourbasheer, k. Jalalierad, Applying the B12N12 nanoparticle as the CO, CO2, H2O and NH3 sensor, Chemical Review and Letters 1 1 (2018) 31-6. doi: 10.22034/crl.2018.85214
[12] HR. Jappor, SA. Khudair, Electronic properties of adsorption of CO, CO2, NH3, NO, NO2 and SO2 on nitrogen doped graphene for gas sensor applications, Sensor Letters 15 5 (2017) 432-9. https://doi.org/10.1166/sl.2017.3819
[13] H. Oymak, Ş. Erkoç, Titanium coverage on a single-wall carbon nanotube: molecular dynamics simulations, Chemical physics 300 (1-3) (2004) 277-283. https://doi.org/10.1016/j.chemphys.2004.02.013
[14] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: a generic force field for molecular simulations, Journal of Physical chemistry 94 26 (1990) 8897-8909. https://doi.org/10.1021/j100389a010
[15] S. Pałucha, Z. Gburski, J. Biesiada, A molecular dynamics study of fullerene–carbon monoxide mixture, Journal of molecular structure 704 (1-3) (2004) 269-273. https://doi.org/10.1016/j.molstruc.2004.02.044
[16] H.M. Stowe, G.S. Hwang, Molecular insights into the enhanced rate of CO2 absorption to produce bicarbonate in aqueous 2-amino-2-methyl-1-propanol, Physical Chemistry Chemical Physics 19 47 (2017) 32116-32124. https://doi.org/10.1039/C7CP05580C
[17] E. Iskrenova, S. Patnaik, Solvent effects in the thermal decomposition reaction of ammonium carbamate: A computational molecular dynamics study of the relative solubilities of CO2 and NH3 in water, ethylene glycol, and their mixtures, International Journal of Heat and Mass Transfer 100 (2016) 224-230. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.050
[18] B. Axilrod, E. Teller, Interaction of the van der Waals type between three atoms, The Journal of Chemical Physics 11 6 (1943) 299-300. https://doi.org/10.1063/1.1723844
[19] A.N. Enyashin, A.L. Ivanovskii, Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes, Computational and Theoretical Chemistry 989 (2012) 27-32. https://doi.org/10.1016/j.comptc.2012.02.034