Nonclassical properties of binomial state in inertial and accelerated motion

Document Type : Full length research Paper

Authors

Department of Engineering Sciences and Physics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran

Abstract

In this article, we considered the effect of uniform acceleration on the quantum binomial state, which consists of a superposition of single-mode Fock states with binomial coefficients. In particular, we studied the nonclassical features of the quantum binomial state under Unruh effect. We obtained analytically various witnesses of nonclassicality such as squeezing, Mandel parameter, and Vogel’s criterion. We found that squeezing could be increased or decreased by the Unruh effect for different observers.  In addition, with the increase of the number of single-mode Fock states in the quantum binomial state, the squeezing increases. Moreover, we found the Mandel parameter and Vogel’s criterion which is a sufficient condition for the nonclassicality of the state and compared the results with the inertial observer.

Keywords

Main Subjects


[1] S. Pirandola, et al., Advances in quantum cryptography, Advances in Optics and Photonics 12 (2020) 1012-1236.  https://doi.org/10.1364/AOP.361502
[2] L. Calderaro, et al., Towards quantum communication from global navigation satellite system, Quantum Science and Technology 4 (2018) 015012. https://doi.org/10.1088/2058-9565/aaefd4
[3] P.M. Alsing, I. Fuentes, Observer-dependent entanglement, Classical and Quantum Gravity 29 (2012) 224001. https://doi.org/10.1088/0264-9381/29/22/224001
[4] S. Aggarwal, B. Mukhopadhyay, G. Gregori, Relativistic Landau quantization in non-uniform magnetic field and its applications to white dwarfs and quantum information, SciPost Physsics 11 (2021) 093.  https://doi.org/10.21468/SciPostPhys.11.5.093
[5] S.H. Wu, H.S. Zeng, T. Liu, Quantum correlation between a qubit and a relativistic boson in an expanding spacetime, Classical and Quantum Gravity 39 (2022) 135016. https://doi.org/10.1088/1361-6382/ac7508
[6] X. Liu, J. Jing, Z. Tian, W. Yao, Does relativistic motion always degrade quantum Fisher information?, Physical Review D 103 (2021)125025. https://doi.org/10.1103/PhysRevD.103.125025
[7] X. Huang, J. Feng, Y.Z. Zhang, H. Fan, Quantum estimation in an expanding spacetime, Annals of Physics 397 (2018) 336-350. https://doi.org/10.1016/j.aop.2018.08.021
[8] G. Samuels, D. Dutta, P. Nikam Mahon, The Importance of Bell States in Quantum Computing, 16th International Conference on Information Technology-New Generations (ITNG), Advances in Intelligent Systems and Computing, Springer, 2019, 581-585. https://doi.org/10.1007/978-3-030-14070-0_82
[9] D.E. Bruschi, I. Fuentes-Schuller, J. Louko, Voyage to alpha centauri: entanglement degradation of cavity modes due to motion, Physical Review D 85 (2012) 061701. https://doi.org/10.1103/PhysRevD.85.061701
[10] R.B. Mann, V.M. Villalba, Speeding up entanglement degradation, Physical Review A 80 (2009) 022305.
[11] F. Ahmadi, S.R. Miry, Entanglement of hybrid state by a constant electric field, Quantum Information Processing 20 (2021) 301. https://doi.org/10.1007/s11128-021-03224-8
[12] K. Nemoto, W.J. Munro, Nearly deterministic linear optical controlled-NOT gate, Physical Review Letters 93 (2004) 250502. https://doi.org/10.1103/PhysRevLett.93.250502
[13] R. Pakniat, M.K. Tavassoly, M.H. Zandi, Entanglement swapping and teleportation based on cavity QED method using the nonlinear atom-field interaction: Cavities with a hybrid of coherent and number states, Optics Communications 382 (2017) 381-385. https://doi.org/10.1016/j.optcom.2016.08.021
[14] G. Adesso, F. Illuminate, Entanglement in continuous-variable systems: recent advances and current perspectives, Journal of Physics A: Mathematical and Theoretical 40 (2007) 7821.
https://doi.org/10.1088/1751-8113/40/28/S01
[15] G. Adesso, S. Ragy, D. Girolami, Continuous variable methods in relativistic quantum information: characterization of quantum and classical correlations of scalar field modes in noninertial frames, Classical and Quantum Gravity 29 (2012) 224002.
https://doi.org/10.1088/0264-9381/29/22/224002
[16] D. Stoler, Equivalence classes of minimum uncertainty packets, Physical Review D 1 (1970) 3217. https://doi.org/10.1103/PhysRevD.1.3217
[17] R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz, J.F. Valley, Observation of squeezed states generated by four-wave mixing in an optical cavity, Physical Review Letters 55 (1985) 2409. https://doi.org/10.1103/PhysRevLett.55.2409
[18] M.E. Farzan, M.J. Faghihi, G. Honarasa, Properties of excited squeezed Kerr states, Journal of Research on Many-body Systems 11 (2021) 98-109. [In Persian] https://doi.org/10.22055/JRMBS.2021.16987
[19] F. Acernese, et al., Increasing the astrophysical reach of the advanced Virgo detector via the application of squeezed vacuum states of light, Physical Review Letters 123 (2019) 231108. https://doi.org/10.1103/PhysRevLett.123.231108
[20] A.M. Branczyk, T.C. Ralph, Teleportation using squeezed single photons, Physical Review A 78 (2008) 052304. https://doi.org/10.1103/PhysRevA.78.052304
[21] L. Bai, L. Zhang, Y. Yang, R. Chang, Y. Qin, J. He, X. Wen, J. Wang, Enhancement of spin noise spectroscopy of rubidium atomic ensemble by using the polarization squeezed light, Optics Express 30 (2022) 1925-1935. https://doi.org/10.1364/OE.448084
[22] L. Mandel, Sub-Poissonian photon statistics in resonance fluorescence, Optics Letters 4 (1979) 205-207. https://doi.org/10.1364/OL.4.000205
 
[23] A. Dehghani, B. Mojaveri, A.A. Alenabi, Photon Added Qutrit Like Entangled Coherent States of Light, Journal of Research on Many-body Systems 11 (2021) 37-50. [In Persian] 10.22055/JRMBS.2021.17268
 
[24] E.V. Shchukin, W. Vogel, Nonclassical moments and their measurement, Physical Review A 72 (2005) 043808. https://doi.org/10.1103/PhysRevA.72.043808
[25] D. Stoler, B.E.A. Saleh, M.C. Teich, Binomial states of the quantized radiation field, Optica Acta 32 (1985) 345–355. https://doi.org/10.1080/713821735
[26] G.S. Agarwal, Negative binomial states of the field-operator representation and production by state reduction in optical processes, Physical Review A 45 (1992) 1787. https://doi.org/10.1103/PhysRevA.45.1787
[27] H.Y. Fan, N.L. Liu, New generalized binomial states of the quantized radiation field, Physics Letters A 264 (1999) 154–161. https://doi.org/10.1016/S0375-9601(99)00777-X
[28] M.H.Y. Moussa and B. Baseia, Generation of the reciprocal-binomial state, Physics Letters A 238 (1998) 223–226. https://doi.org/10.1016/S0375-9601(97)00899-2
[29] R. Lo Franco, G. Compagno. A. Messina, A. Napoli, Quantum computation with generalized binomial states in cavity quantum electrodynamics, International Journal of Quantum Information 7 (2009) 155–162. https://doi.org/10.1142/S0219749909004803
[30] M.E. Peskin, An Introduction to Quantum Field Theory, CRC Press, 2018. https://doi.org/10.1201/9780429503559
[31] S. Winitzki, Lecture notes on Elementary Introduction to Quantum Fields in Curved Spacetime, Heidelberg, 2006.
[32] N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press, 1982. https://doi.org/10.1017/CBO9780511622632
[33] I. Fuentes, Lecture series on relativistic quantum information, In Diversities in quantum Computation and quantum Information, World Scientific (2013) 107–147. 10.1142/9789814425988_0004
[34] T.C. Ralph, G.J. Milburn, T. Downes, Quantum connectivity of space-time and gravitationally induced decorrelation of entanglement, Physical Review A 79 (2009) 022121.
https://doi.org/10.1103/PhysRevA.79.022121
[35] J.S. Sidhu, et al., Advances in space quantum communications, IET Quantum Communication 2 (2021) 182–217. https://doi.org/10.1049/qtc2.12015
[36] S.R. Miry, F. Ahmadi, Entanglement, QFI and squeezing of hybrid state in non-inertial frame, Journal of Interfaces, Thin films, and Low dimensional systems 5 (2022) 525-535. 10.22051/JITL.2023.42294.1079