پایداری و تحلیل دوشاخگی امواج یون-صوتی غیرخطی در الکترون-پوزیترون-یون پلاسماهای فوق حرارتی

نوع مقاله : مقاله پژوهشی کامل

نویسنده

گروه فیزیک، دانشکده علوم پایه، دانشگاه گنبد کاووس، گنبد کاووس، ایران

چکیده

در این پژوهش، پایداری و تحلیل دوشاخگی امواج غیرخطی یون-صوتی در یک پلاسما شامل یونهای سرد، الکترون‌ها و پوزیترون های غیرماکسولی(با توزیع کاپا) بررسی شده است. در ابتدا، یک معادله مشخصه برای دینامیک امواج یون-صوتی تعیین و سپس پایداری امواج در حال حرکت در فضای پارامتری نقاط تعادل و چگالی پوزیترون‌ها مورد بحث قرار گرفته است. مشخص می‌شود که حرکت دینامیکی مدارهای هموکلینیک و مدارهای دوره‌ای غیرخطی به ازای یک مقدار بحرانی چگالی پوزیترون p_c تحت دوشاخگی قرار می‌گیرند، طوری‌که دو نقطه ثابت بهم برخورد می‌کنند و سپس پایداری آنها تغییر می‌کند. تغییرات چگالی اولیه p_i و بحرانی پوزیترون‌ها p_c، برحسب طیف گسترده‌ای از مقادیر شاخص طیفی پوزیترون‌ها κ_p و نسبت دمای الکترون‌ها به پوزیترون‌ها δ نیز مورد مطالعه قرار گرفته است. علاوه براین، بر طبق تحلیل فضای فاز، وجود مدارهای هموکلینیک، مدارهای دوره‌ای غیرخطی و همچنین تناوبی با دامنه بالا نیز برای شرایط مختلف بررسی شده است. نشان داده شده است که چگالی پوزیترون‌ها و نسبت دمای الکترون به پوزیترون نقش مهمی در انتشار امواج غیرخطی دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Stability and bifurcation analysis of nonlinear ion-acoustic waves in superthermal electron-positron-ion plasmas

نویسنده [English]

  • Mostafa Mehdipoor
Department of Physics, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
چکیده [English]

In this study, the stability and bifurcation analysis of nonlinear ion-acoustic waves is investigated in a non-Maxwellian plasma consisting of cold ions and Kappa-distributed electrons and positrons.  First, a characteristic equation for the evolution of ion-acoustic waves is obtained and then the stability of traveling wave solution on fixed points-energetic positron density plane is discussed numerically. It is found that the motion dynamics of homoclinic orbits and nonlinear periodic orbits undergo a transcritical bifurcation at the critical positron density , where two fixed points coalesce, and then switch their stabilities. The variations of the initial  and critical  positron concentrations versus a wide range of values of the spectral index of positrons  and electron-to-positron temperature ratio  are also studied. Furthermore, according to the phase portraits analysis, the coexistence of homoclinic orbits, nonlinear periodic, and super nonlinear periodic orbits is also investigated for different conditions. It is shown that the positron density and the temperature ratio of electron to positron play a crucial role in the propagation of nonlinear waves.

کلیدواژه‌ها [English]

  • Ion-acoustic waves
  • Bifurcation analysis
  • Superthermal plasmas
  • Phase portrait
[1] L. Stenflo, Generalized Lorenz equations for acoustic-gravity waves in the atmosphere, Physics Scripta 53 (1996) 83-84. https://doi.org/ 10.1088/0031-8949/53/1/015
[2] H. Ikezi, R. Taylor, D. Baker, Formation and interaction of ion-Acoustic solitions, Physical Review Letters 25 (1970) 11-14. http://dx.doi.org/10.1103/PhysRevLett.25.11
[3] H. Washimi, T. Taniuti, Propagation of ion-acoustic solitary waves of small amplitude, Physical Review Letters 17 (1966) 966. http://dx.doi.org/10.1103/PhysRevLett.17.996
[4] R.C. Davidson, Methods in nonlinear plasma theory, Academic Press (1972).
[5] V.M. Vasyliunas, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3, Journal of Geophysical Research 73 (1968) 2839. https://doi.org/10.1029/JA073i009p02839
[6] V. Pierrard, J. Lemaire, Lorentzian ion exosphere model, Journal of Geophysical Research 101 (1966) 7923. https://doi.org/10.1029/95JA03802
[7] S.P. Christon, D.G. Mitchel, D.J. Williams, L.A. Frank, C.Y. Huang, T.E. Eastman, Energy spectra of plasma sheet ions and electrons from ∼50 eV/e to ∼1 MeV during plasma temperature transitions, Journal of Geophysical Research 93 (1988) 2562. https://doi.org/10.1029/JA093iA04p02562
[8] M. Maksimovic, V. Pierrard, P. Riley, Ulysses electron distributions fitted with Kappa functions, Geophysical Physical Research 24 (1997) 1151.
[9] M. Krimigis, J.F. Carbary, E.P. Keath, T.P. Armstrong, L.J. Lanzerotti, G. Gloeckler, General characteristics of hot plasma and energetic particles in the Saturnian magnetosphere: Results from the Voyager spacecraft, Journal of Geophysical Research 88 (1983) 8871. https://doi.org/10.1029/JA088iA11p08871
[10] V. Pierrard, H. Lamy, J. Lemaire, Exospheric distributions of minor ions in the solar wind, Journal of Geophysical Research 109 (2004) A02118. https://doi.org/10.1029/2003JA010069
[11] N.S. Saini, I. Kourakis, M.A. Hellberg, Arbitrary amplitude ion-acoustic solitary excitations in the presence of excess superthermal electrons, Physics of Plasmas 16 (2009) 062903. https://doi.org/10.1063/1.3143036
[12] S. Sultana, I. Kourakis, N.S. Saini, M.A. Hellberg, Oblique electrostatic excitations in a magnetized plasma in the presence of excess superthermal electrons, Physics of Plasmas 17 (2010) 032310. https://doi.org/10.1063/1.3322895
[13] Y.D. Jung, W.P. Hong, Nonthermal effects on the ion-acoustic solitons in Lorentzian electron-ion plasmas, Physics of Plasmas 18 (2011) 024502. https://doi.org/10.1063/1.3559450
[14] T.K. Baluku, M.A. Hellberg, Ion acoustic solitons in a plasma with two-temperature kappa-distributed electrons, Physics of Plasmas 19 (2012) 012106. https://doi.org/10.1063/1.3675866  
[15] F. Verheest, M.A. Hellberg, I. Kourakis, Ion-acoustic supersolitons in plasmas with two-temperature electrons: Boltzmann and kappa distributions, Physics of Plasmas 20 (2013) 082309. https://doi.org/10.1063/1.4818888
[16] F.C. Michel, Theory of pulsar magnetospheres, Reviews of Modern Physics 54 (1982) 1. https://doi.org/10.1103/RevModPhys.54.1
[17] H.R. Miller, P.J. Witta, Active Galactic Nuclei, Springer, Berlin (1987). 
[18] C.M. Surko, M. Levethal, W.S. Crane, A. Passner, F. Wysocki, T.J. Murphy, J. Strachan, W.L. Rowan, Use of positrons to study transport in tokamak plasmas, Review of Scientific Instruments 57 (1986) 1862. https://doi.org/10.1063/1.1139154
[19] C.M. Surko, T. Murphy, Use of the positron as a plasma particle, Physics of Fluids B 2 (1990) 1372. https://doi.org/10.1063/1.859558
[20] M. Tinkle, R.G. Greaves, C.M. Surko, R.L. Spencer, G.W. Mason, Low-order modes as diagnostics of spheroidal non-neutral plasmas, Physical Review. Letters 72 (1994) 352. https://doi.org/10.1103/PhysRevLett.72.352
[21] S.A. El-Tantawy, W.M. Moslem, Arbitrary amplitude ion-acoustic waves in a multicomponent plasma with superthermal species, Physics of Plasmas 18 (2011) 112105. https://doi.org/10.1063/1.3656979
[22] A. Shah, S. Mahmood, Q. Haque, Propagation of solitary waves in relativistic electron-positron-ion plasmas with kappa distributed electrons and positrons, Physics of Plasmas 18 (2011) 114501. https://doi.org/10.1063/1.3659469
[23] S. Hussain, N. Akhtar, S. Mahmood, Ion acoustic solitary waves in electron-positron-ion magneto-rotating Lorentzian plasmas, Astrophysics and Space Science 348 (2013) 475–481. https://doi.org/10.1007/s10509-013- 1576-1
[24] N. Akhtar, S. Mahmood, S. Siddiqui, Effect of ion temperature on modulational instability and envelope solitons of ion acoustic waves in nonthermal electron–positron–ion plasmas, Plasma Physics Controlled Fusion 56 (2014) 095027. https://doi.org/10.1088/0741-335/56/9/095027
[25] M. Mehdipoor, Dissipative ion-acoustic waves in collisional electron-positron-ion plasmas with Kappa distribution, Contributions to Plasma Physics 59 (2019) 7. https://doi.org/10.1002/ctpp.201900006
[26] G.M. Zaslavsky, et al., Large-scale behavior of the tokamak density fluctuations, Physics of Plasmas 7 (2000) 3691-3695. DOI: 10.1063/1.1286669
[27] M. Nurujjaman, R. Narayanan, A.N. Iyengar, Parametric investigation of nonlinear fluctuations in a dc glow discharge plasma, Chaos 17 (2007) 043121-6. https://doi.org/10.1063/1.2815818
[28] A.M. Wharton, et al, Theoretical and numerical modelling of chaotic electrostatic ion cyclotron (EIC) oscillations by Jerk equation, Physics of Plasmas 21 (2014) 022311-6. DOI: 10.1063/1.4865823
[29] P. Feng, J. Zhang, W. Wang, Spike-like solitary waves in incompressible boundary layers driven by a travelling wave, Chaos 26 (2016) 063104-9. https://doi.org/10.1063/1.4953015
[30] S. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Perseus, Massachusetts, (1994).
[31] A. Saha, P. Chatterjee, Bifurcations of ion acoustic solitary waves and periodic waves in an unmagnetized plasma with kappa distributed multi-temperature electrons, Astrophysics and Space Science 350 (2014) 631. https://doi.org/10.1007/s10509-014-1796-z
[32] A. Saha, P. Chatterjee, C.S. Wong, Dynamic motions of ion acoustic waves in plasmas with superthermal electrons.  Brazilian Journal of Physics 45 (2015) 656–663. https://doi.org/10.1007/s13538-015-0358-3
[33] A. Saha, P. Chatterjee, Bifurcations of dust acoustic solitary waves and periodic waves in an unmagnetized plasma with nonextensive ions, Astrophysics and Space Science 351 (2014) 533. https://doi.org/10.1007/s10509-014-1849-3
[34] A. Saha, P. Chatterjee, New analytical solutions for dust acoustic solitary and periodic waves in an unmagnetized dusty plasma with kappa distributed electrons and ions, Physics of Plasma 21 (2014) 022111. https://doi.org/10.1063/1.4864626
[35] A. Saha, J. Tamang, Effect of q-nonextensive hot electrons on bifurcations of nonlinear and supernonlinear ion-acoustic periodic waves, Advances in Space Research 63 (2019) 1596-1606. https://doi.org/10.1016/j.asr.2018.11.010
[36] J. Tamang, A. Saha, Bifurcations of small-amplitude supernonlinear waves of the mKdV and modified Gardner equations in a three-component electron-ion plasma, Physics of Plasmas 27 (2020) 012105-09. DOI: 10.1063/1.5115821
[37] A. Saha, P.K. Prasad, S. Banerjee, Bifurcation of ion-acoustic superperiodic waves in auroral zone of Earth’s magnetosphere, Astrophysics and Space Science 364 (2019) 180. DOI:  10.1007/s10509-019-3671-4
[38] P.K. Prasad, A. Saha, Bifurcation analysis of ion-acoustic waves for Schrödinger equation in nonextensive Solar wind plasma, Advances in Space Research 67 (2021) 9-19. DOI: 10.1016/j.asr.2020.07.031
[39] A. Saha, Nikhil Pal, Prasanta Chatterjee, Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons, Physics of Plasmas 21 (2014) 102101. http://dx.doi.org/10.1063/1.4896715
[40] U.N. Ghosh, A. Saha, N. Pal, P. Chatterjee, Dynamic structures of nonlinear ion acoustic waves in a nonextensive electron–positron–ion plasma, Journal of Theoretical and Applied Physics 9 (2015) 321–329. DOI: 10.1007/s40094-015-0192-6
[41] H. Alinejad, Transcritical bifurcation of nonlinear electrostatic waves in a superthermal dusty plasma, Waves in Random and Complex Media (2022) https://doi.org/10.1080/17455030.2022.2059591
[42] H. Alinejad, Effect of dust polarity on transcritical bifurcation of dust ion-acoustic waves in a nonextensive dusty plasma, Chaos, Solitons and Fractals 157 (2022) 111907. https://doi.org/10.1016/j.chaos.2022.111907
[43] H. Alinejad, Stability and bifurcation analysis of low-frequency electrostatic waves in warm negative ion plasmas, Contributions to Plasma Physics 62 (2022) 9. https://doi.org/10.1002/ctpp.202200082
[44] T.K. Baluku, M.A. Hellberg, I. Kourakis, N.S. Saini, Dust ion acoustic solitons in a plasma with kappa-distributed electrons, Physics of Plasmas 17 (2010) 053702. https://doi.org/10.1063/1.3400229
[45] V.I. Karpman, C.A. Norman, D ter Haar, V.N. Tsytovich, Relativistic Solitons and Pulsars, Physica Scripta 11 (1975( 271. DOI 10.1088/0031-8949/11/5/006
[46] A.E. Dubinov, D.Y. Kolotov, Ion-acoustic supersolitons in plasma, Plasma Physics Report 38 (2012) 909-912. https://doi.org/10.1134/S1063780X12100054