[2] F. Marsusi, I.A. Fedorov, S. Gerivani, Graphene-induced band gap renormalization in polythiophene: a many-body perturbation study, Journal of Physics: Condensed Matter 30 (2017) 035002. doi: 10.1088/1361-648X/aa9e68
[3] S.M. Monavari, F. Marsusi, Improvement of performance of electronic devices based on polythiophane using band gap engineering in the presence of graphene, Journal of Research on Many-body Systems 8 (2019) 182-198. [In Persian] doi:10.22055/jrmbs.2018.13968
[5] S.W. Cranford, J.B. Markus, Mechanical properties of graphyne, Carbon 49 (2011) 4111-4121. https://doi.org/10.1016/j.carbon.2011.05.024
[6] K. Srinivasu, K.G. Swapan, Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications, The Journal of Physical Chemistry C 116 (2012) 5951-5956. https://doi.org/10.1021/jp212181h
[7] R.V. Salvatierra, V.H. Souza, C.F. Matos, M.M. Oliveira, A.J. Zarbin, Graphene chemically synthesized from benzene at liquid–liquid interfaces, Carbon 93 (2015) 924-932. https://doi.org/10.1016/j.carbon.2015.06.016
[8] A.K. Srivastava, I. Anusiewicz, S. Velickovic, W.M. Sun, N. Misra, Atomic Clusters: Theory & Experiments, Frontiers in Chemistry 9 (2021) 795113. https://doi.org/10.3389
[9] M. Qasemnazhand, F. Khoeini, Theoretical study of structural and electronic properties of sila-dodecahedrane as an optical-chemical sensor by density functional theory method, Nanoscale 8 (2021) 32-41. [In Persian] https://dorl.net/dor/20.1001.1.24235628.1400.8.4.4.9
[10] M. Ahmadi, A. Ghaemi, M. Qasemnazhand, Lithium hydroxide as a high capacity adsorbent for CO2 capture: experimental, modeling and DFT simulation, Scientific Reports 13 (2023) 7150. https://doi.org/10.1038/s41598-023-34360-z
[11] S.M. Monavari, F. Marsusi, N. Memarian, M. Qasemnazhand, Biosensors based on carbon nanotubes and carbon nano-rings: A DFT study, (2022). https://doi.org/10.21203/rs.3.rs-1863167/v1
[12] J. Li, H. Bai, N. Yuan, Y. Wu, Y. Ma, P. Xue, Y. Ji, Density functional theory studies of Si36H36 and C36H36 nanocages, International Journal of Quantum Chemistry 114 (2014) 725-730. https://doi.org/10.1002/qua.24655
[13] M. Qasemnazhand, F. Khoeini, F. Marsusi, Fullerene, fullerane and the fulleryne: A comparative thermodynamic study for a new member of the carbon cage family, Results in Physics 43 (2022) 106066. https://doi.org/10.1016/j.rinp.2022.106066
[14] S. Datta, Quantum transport: atom to transistor, Cambridge university press, 2005. https://doi.org/10.1017/CBO9781139164313
[15] E.S. Khodaparast, M. Qasemnazhand, F. Marsusi, Theoretical investigation of using armchair and zigzag carbon nano rings for DNA sequencing based on density functional theory, Iranian Journal of Physics Research 22 (2023) 879-897. [In Persian] https://doi.org/10.47176/ijpr.22.4.51450
[16] M. Qasemnazhand, F. Marsusi, Theoretical study of opto-electronic properties of silafulleranes using density functional theory, Journal of Research on Many-body Systems 7 (2017) 77-87. [In Persian] https://doi.org/10.22055/jrmbs.2017.13328
[17] F. Marsusi, M. Qasemnazhand, Sila-fulleranes: promising chemically active fullerene analogs, Nanotechnology 27 (2016) 275704. doi: 10.1088/0957-4484/27/27/275704
[18] M. Qasemnazhand, F. Khoeini, F. Marsusi, Optical response of sila-fulleranes in interaction with glycoproteins for environmental monitoring, Frontiers in Physics 9 (2021) 691034. https://doi.org/10.3389/fphy.2021.691034
[19] F. Khoeini, Analytical study of electronic quantum transport in carbon-based nanomaterials, Diamond and related materials 47 (2014) 7-14. https://doi.org/10.1016/j.diamond.2014.05.001
[20] K. Walczak, The role of quantum interference in determining transport properties of molecular bridges, Open Chemistry 2 (2004) 524-533. https://doi.org/10.2478/BF02476205
[21] K. Ghaderi, F. Khoeini, Theoretical study of electronic conductance in a quantum system with two chain model leads, Journal of Research on Many-body Systems 3 (2013) 29-39. [In Persian] https://jrmbs.scu.ac.ir/?_action=articleInfo&article=10714&lang=en&lang=fa
[22] M. Qasemnazhand, F. Khoeini, F. Marsusi, Photoluminescence in a Glucose-coated Sila-fullerane and Its Nanomedicine Applications. Preprint (2021). https://doi.org/10.21203/rs.3.rs-152222/v1
[23] C.S. Casari, M. Tommasini, R.R. Tykwinski, A. Milani, Carbon-atom wires: 1-D systems with tunable properties, Nanoscale 8 (2016) 4414-4435. https://doi.org/10.1039/C5NR06175J
[24] W.A. Harrison, Electronic structure and the properties of solids: the physics of the chemical bond, Courier Corporation, (2012). ISBN 981-238-707-2
[25] M. Rostami chayjan, I. Ahmadi, F. Khoeini, Highly tunable charge transport in defective graphene nanoribbons under external local forces and constraints: A hybrid computational study, Results in Physics 20 (2021) 103770. https://doi.org/10.1016/j.rinp.2020.103770
[26] E. Manousakis, Electronic structure of C60 within the tight-binding approximation, Physical Review B 44 (1991) 10991. https://doi.org/10.1103/PhysRevB.44.10991
[27] M. Qasemnazhand, F. Khoeini, F. Marsusi, Predicting the new carbon nanocages, fullerynes: a DFT study, Scientific reports 11 (2021) 2511. https://doi.org/10.1038/s41598-021-82142-2
[28] M. Qasemnazhand, F. Khoeini, S. Shekarforoush, Electronic transport properties in the stable phase of a cumulene/B7/cumulene molecular bridge investigated using density functional theory and a tight-binding method, New Journal of Chemistry 43 (2019) 16515-16523. https://doi.org/10.1039/C9NJ02860A
[29] S.M. Mirzanian, A.A. Shokri, Electronic transport in a molecular junction as XOR and OR gates, Journal of Physics and Chemistry of Solids 77 (2015) 146-150. https://doi.org/10.1016/j.jpcs.2014.10.001
[31] A. Shokri, S.M. Mirzanian, Transport engineering design of AND and NOR gates with a 1, 4-2-phenyl-dithiolate molecule, Journal of molecular modeling 21 (2015) 1-7. https://doi.org/10.1007/s00894-014-2544-6
[32] M. Qasemnazhand, F. Khoeini, M. Badakhshan, Tuning transport properties of deformed carbon nanocages by electric field, electrode material, and type of coupling, Materials Today Chemistry 28 (2023) 101383. https://doi.org/10.1016/j.mtchem.2023.101383
[33] M. Qasemnazhand, F. Khoeini, M. Badakhshan, Investigation of electron transport properties in fullerene and fullerane nanocages, Iranian Journal of Physics Research 21 (2021) 441-448. [In Persian] https://doi.org/10.47176/ijpr.21.3.01146
[34] M. Qasemnazhand, F. Khoeini, F. Marsusi, Fulleryne, a new member of the carbon cages family, arXiv preprint arXiv:2003.09835, (2020). https://doi.org/10.48550/arXiv.2003.09835
[35] R. Habibpour Gharacheh, R. Vaziri, Computational and theoretical study of electronic, spectroscopic and chemical properties of (ZnO) n (n≤4) nanoclusters, Journal of Research on Many-body Systems 6 (2016) 11-20. [In Persian] https://doi.org/10.22055/jrmbs.2016.12472
[36] M. Nadafan, E. Talebian, M.T. Rahimi, J.Z. Anvari, Computational and theoretical study of electronic, spectroscopic and chemical properties of (ZnS) n (n≤4) nanoclusters, Journal of Research on Many-body Systems 10 (2020) 111-124. [In Persian] https://doi.org/10.22055/jrmbs.2020.15921
[37] H. Tavakol, D. Shahabi, DFT, QTAIM, and NBO study of adsorption of rare gases into and on the surface of sulfur-doped, single-wall carbon nanotubes. The Journal of Physical Chemistry C 119 (2015) 6502-6510. https://doi.org/10.1021/jp510508y
[39] S.M. Monavari, F. Marsusi, N. Memarian, M. Qasemnazhand, Carbon nanotubes and nanobelts as potential materials for biosensor, Scientific Reports 13 (2023) 3118. https://doi.org/10.1038/s41598-023-29862-9