[1] H. Risken, Fokker-planck equation, Springer (1996). https://doi.org/10.1007/978-3-642-61544-3
[2] S.F. Kwok, Langevin and Fokker-Planck Equations and Their Generalizations: Descriptions and Solutions, World Scientific (2018). https://doi.org/10.1142/9745
[3] C. Curtiss, R. Byron Bird, Fokker–Planck equation for the one-molecule distribution function in polymer mixtures and its solution, The Journal of chemical physics, 106 (1997) 9899-9921. https://doi.org/10.1063/1.473878
[4] K. Lee, W. Sung, Ion transport and channel transition in biomembranes, Physica A: Statistical Mechanics and its Applications, 315 (2002) 79-97. https://doi.org/10.1016/S0378-4371(02)01247-5
[5] D. Brigo, F. Mercurio, Lognormal-mixture dynamics and calibration to market volatility smiles, International Journal of Theoretical and Applied Finance, 5 (2002) 427-446. https://doi.org/10.1142/S0219024902001511
[6] C. Montagnon, A closed solution to the Fokker–Planck equation applied to forecasting, Physica A: Statistical Mechanics and its Applications, 420 (2015) 14-22. https://doi.org/10.1016/j.physa.2014.10.079
[7] S.K. Banik, B.C. Bag, D.S. Ray, Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions, Physical Review E, 65 (2002) 051106. https://doi.org/10.1103/PhysRevE.65.051106
[8] T. Tomé, M.J. De Oliveira, Stochastic dynamics and irreversibility, Springer (2015). https://doi.org/10.1007/978-3-319-11770-6
[9] M. Bernstein, L.S. Brown, Supersymmetry and the bistable Fokker-Planck equation, Physical review letters, 52 (1984) 1933. https://doi.org/10.1103/PhysRevLett.52.1933
[10] R. Sasaki, Exactly solvable potentials with finitely many discrete eigenvalues of arbitrary choice, Journal of Mathematical Physics, 55 (2014) 0022-2488. https://doi.org/10.1063/1.4880200
[11] G. Lévai, O. Özer, An exactly solvable Schrödinger equation with finite positive position-dependent effective mass, Journal of Mathematical Physics, 51 (2010) 0022-2488. https://doi.org/10.1063/1.3483716
[12] D. Dutta, P. Roy, Conditionally exactly solvable potentials and exceptional orthogonal polynomials, Journal of Mathematical Physics, 51 (2010) 0022-2488. https://doi.org/10.1063/1.3339676
[13] F. Finkel, A. González‐López, M.A. Rodriguez, Quasi‐exactly solvable potentials on the line and orthogonal polynomials, Journal of Mathematical Physics, 37 (1996) 3954-3972. https://doi.org/10.1063/1.531591
[14] M. Znojil, Perturbation theory for quantum mechanics in its Hessenberg-matrix representation, International Journal of Modern Physics A, 12 (1997) 299-304. https://doi.org/10.1142/S0217751X97000451
[15] S. Dong, G.-H. Sun, B. Falaye, S.-H. Dong, Semi-exact solutions to position-dependent mass Schrödinger problem with a class of hyperbolic potential V0tanh (ax), The European Physical Journal Plus, 131 (2016) 176. https://doi.org/10.1140/epjp/i2016-16176-5
[16] F. Cooper, A. Khare, U. Sukhatme, Supersymmetry and quantum mechanics, Physics Reports, 251 (1995) 267-385. https://doi.org/10.1016/0370-1573(94)00080-M
[17] R. Anjos, G. Freitas, C. Coimbra-Araújo, Analytical solutions of the Fokker–Planck equation for generalized Morse and Hulthén potentials, Journal of Statistical Physics, 162 (2016) 387-396. https://doi.org/10.1007/s10955-015-1414-7
[19] T. Koohrokhi, S. Kartal, A. Mohammadi, Anti-PT transformations and complex non-Hermitian PT-symmetric superpartners, Annals of Physics, 459 (2023) 169490. https://doi.org/10.1088/1572-9494/ac6fc3.
[20] T. Koohrokhi, A. Izadpanah, S.J. Hosseinikhah, Investigation of Singularity of Central Shape Invariant Potentials, Journal of Research on Many-body Systems, In Press. 10.22055/jrmbs.2024.18897
[21] J. Fernández, B. Albright, F.N. Beg, M.E. Foord, B.M. Hegelich, J. Honrubia, M. Roth, R.B. Stephens, L. Yin, Fast ignition with laser-driven proton and ion beams, Nuclear fusion, 54 (2014) 054006. https://doi.org/10.1088/0029-5515/54/5/054006
[22] L. Robson, P. Simpson, R.J. Clarke, K.W. Ledingham, F. Lindau, O. Lundh, T. McCanny, P. Mora, D. Neely, C.-G. Wahlström, Scaling of proton acceleration driven by petawatt-laser–plasma interactions, Nature physics, 3 (2007) 58-62. https://doi.org/10.1038/nphys476
[23] J. Honrubia, J. Fernández, M. Temporal, B. Hegelich, J. Meyer-ter-Vehn, Fast ignition of inertial fusion targets by laser-driven carbon beams, Physics of Plasmas, 16 (2009) 1070-1664X. https://doi.org/10.1063/1.3234248
[24] C.-K. Li, R.D. Petrasso, Charged-particle stopping powers in inertial confinement fusion plasmas, Physical review letters, 70 (1993) 3059. https://doi.org/10.1103/PhysRevLett.70.3059
[25] M. Mahdavi, T. Koohrokhi, Energy deposition of multi-MeV protons in compressed targets of fast-ignition inertial confinement fusion, Physical Review E, 85 (2012) 016405. https:// /doi/10.1103/PhysRevE.85.016405
[26] M. Mahdavi, T. Koohrokhi, R. Azadifar, The interaction of quasi-monoenergetic protons with pre-compressed inertial fusion fuels, Physics of Plasmas, 19 (2012) 1070-1664X. https://doi.org/10.1063/1.4745862
[27] A. Gangopadhyaya, J.V. Mallow, C. Rasinariu, Supersymmetric quantum mechanics: An introduction, World Scientific Publishing Company2017. https://doi.org/10.1142/10475.
[28] A. Gangopadhyaya, J.V. Mallow, Generating shape invariant potentials, International Journal of Modern Physics A, 23 (2008) 4959-4978. https://doi.org/10.1142/S0217751X08042894.
[29] D. Gómez-Ullate, N. Kamran, R. Milson, An extended class of orthogonal polynomials defined by a Sturm–Liouville problem, Journal of Mathematical Analysis and Applications, 359 (2009) 352-367. https://doi.org/10.1016/j.jmaa.2009.05.052.