Time Independent of Drift Coefficients for Shape Invariant Potentials

Document Type : Full length research Paper

Authors

Department of Physics, Faculty of Sciences, Golestan University, Gorgan, Iran

Abstract

In this research, using the analytical solution of the Fokker-Planck equation, the time-independent drift coefficients for the shape-invariant potentials have been obtained. In this approach, first, the Fokker-Planck equation is converted into a Schrödinger-like equation. Then, using the mechanism of supersymmetric quantum mechanics, the Fokker-Planck equation is analytically solved and its explicit solutions are obtained. In this calculation, the diffusion coefficient is considered a constant. This approach is applicable to shape-invariant potentials which are exactly solvable potentials. Exactly solvable potentials refer to potentials for which all eigenvalues and eigenfunctions can be obtained explicitly. These calculations are used to examine the probability density distribution of laser-accelerated carbon beams after entering the fuel region in the fast ignition method.

Keywords

Main Subjects


[1] H. Risken, Fokker-planck equation, Springer (1996). https://doi.org/10.1007/978-3-642-61544-3
[2] S.F. Kwok, Langevin and Fokker-Planck Equations and Their Generalizations: Descriptions and Solutions, World Scientific (2018). https://doi.org/10.1142/9745
[3] C. Curtiss, R. Byron Bird, Fokker–Planck equation for the one-molecule distribution function in polymer mixtures and its solution, The Journal of chemical physics, 106 (1997) 9899-9921. https://doi.org/10.1063/1.473878
[4] K. Lee, W. Sung, Ion transport and channel transition in biomembranes, Physica A: Statistical Mechanics and its Applications, 315 (2002) 79-97. https://doi.org/10.1016/S0378-4371(02)01247-5
[5] D. Brigo, F. Mercurio, Lognormal-mixture dynamics and calibration to market volatility smiles, International Journal of Theoretical and Applied Finance, 5 (2002) 427-446. https://doi.org/10.1142/S0219024902001511
[6] C. Montagnon, A closed solution to the Fokker–Planck equation applied to forecasting, Physica A: Statistical Mechanics and its Applications, 420 (2015) 14-22. https://doi.org/10.1016/j.physa.2014.10.079
[7] S.K. Banik, B.C. Bag, D.S. Ray, Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions, Physical Review E, 65 (2002) 051106. https://doi.org/10.1103/PhysRevE.65.051106
[8] T. Tomé, M.J. De Oliveira, Stochastic dynamics and irreversibility, Springer (2015). https://doi.org/10.1007/978-3-319-11770-6
[9] M. Bernstein, L.S. Brown, Supersymmetry and the bistable Fokker-Planck equation, Physical review letters, 52 (1984) 1933. https://doi.org/10.1103/PhysRevLett.52.1933
[10] R. Sasaki, Exactly solvable potentials with finitely many discrete eigenvalues of arbitrary choice, Journal of Mathematical Physics, 55 (2014) 0022-2488. https://doi.org/10.1063/1.4880200
[11] G. Lévai, O. Özer, An exactly solvable Schrödinger equation with finite positive position-dependent effective mass, Journal of Mathematical Physics, 51 (2010) 0022-2488. https://doi.org/10.1063/1.3483716
[12] D. Dutta, P. Roy, Conditionally exactly solvable potentials and exceptional orthogonal polynomials, Journal of Mathematical Physics, 51 (2010) 0022-2488. https://doi.org/10.1063/1.3339676
[13] F. Finkel, A. González‐López, M.A. Rodriguez, Quasi‐exactly solvable potentials on the line and orthogonal polynomials, Journal of Mathematical Physics, 37 (1996) 3954-3972. https://doi.org/10.1063/1.531591
[14] M. Znojil, Perturbation theory for quantum mechanics in its Hessenberg-matrix representation, International Journal of Modern Physics A, 12 (1997) 299-304. https://doi.org/10.1142/S0217751X97000451
[15] S. Dong, G.-H. Sun, B. Falaye, S.-H. Dong, Semi-exact solutions to position-dependent mass Schrödinger problem with a class of hyperbolic potential V0tanh (ax), The European Physical Journal Plus, 131 (2016) 176. https://doi.org/10.1140/epjp/i2016-16176-5
[16] F. Cooper, A. Khare, U. Sukhatme, Supersymmetry and quantum mechanics, Physics Reports, 251 (1995) 267-385. https://doi.org/10.1016/0370-1573(94)00080-M
[17] R. Anjos, G. Freitas, C. Coimbra-Araújo, Analytical solutions of the Fokker–Planck equation for generalized Morse and Hulthén potentials, Journal of Statistical Physics, 162 (2016) 387-396. https://doi.org/10.1007/s10955-015-1414-7
[18] T. Koohrokhi, S. Kartal, A new effective potential for deuteron, Communications in Theoretical Physics, 74 (2022) 075301. https://doi.org/10.1016/j.aop.2023.169490.
[19] T. Koohrokhi, S. Kartal, A. Mohammadi, Anti-PT transformations and complex non-Hermitian PT-symmetric superpartners, Annals of Physics, 459 (2023) 169490. https://doi.org/10.1088/1572-9494/ac6fc3.
[20] T. Koohrokhi, A. Izadpanah, S.J. Hosseinikhah, Investigation of Singularity of Central Shape Invariant Potentials, Journal of Research on Many-body Systems, In Press. 10.22055/jrmbs.2024.18897
[21] J. Fernández, B. Albright, F.N. Beg, M.E. Foord, B.M. Hegelich, J. Honrubia, M. Roth, R.B. Stephens, L. Yin, Fast ignition with laser-driven proton and ion beams, Nuclear fusion, 54 (2014) 054006. https://doi.org/10.1088/0029-5515/54/5/054006
[22] L. Robson, P. Simpson, R.J. Clarke, K.W. Ledingham, F. Lindau, O. Lundh, T. McCanny, P. Mora, D. Neely, C.-G. Wahlström, Scaling of proton acceleration driven by petawatt-laser–plasma interactions, Nature physics, 3 (2007) 58-62. https://doi.org/10.1038/nphys476
[23] J. Honrubia, J. Fernández, M. Temporal, B. Hegelich, J. Meyer-ter-Vehn, Fast ignition of inertial fusion targets by laser-driven carbon beams, Physics of Plasmas, 16 (2009) 1070-1664X. https://doi.org/10.1063/1.3234248
[24] C.-K. Li, R.D. Petrasso, Charged-particle stopping powers in inertial confinement fusion plasmas, Physical review letters, 70 (1993) 3059. https://doi.org/10.1103/PhysRevLett.70.3059
[25] M. Mahdavi, T. Koohrokhi, Energy deposition of multi-MeV protons in compressed targets of fast-ignition inertial confinement fusion, Physical Review E, 85 (2012) 016405. https:// /doi/10.1103/PhysRevE.85.016405
[26] M. Mahdavi, T. Koohrokhi, R. Azadifar, The interaction of quasi-monoenergetic protons with pre-compressed inertial fusion fuels, Physics of Plasmas, 19 (2012) 1070-1664X. https://doi.org/10.1063/1.4745862
[27] A. Gangopadhyaya, J.V. Mallow, C. Rasinariu, Supersymmetric quantum mechanics: An introduction, World Scientific Publishing Company2017. https://doi.org/10.1142/10475.
[28] A. Gangopadhyaya, J.V. Mallow, Generating shape invariant potentials, International Journal of Modern Physics A, 23 (2008) 4959-4978. https://doi.org/10.1142/S0217751X08042894.
[29] D. Gómez-Ullate, N. Kamran, R. Milson, An extended class of orthogonal polynomials defined by a Sturm–Liouville problem, Journal of Mathematical Analysis and Applications, 359 (2009) 352-367. https://doi.org/10.1016/j.jmaa.2009.05.052.