مطالعة عددی نرخ واکنش و شدت گذار B(E2) برای واکنش17O(p,γ)18F در انرژی‌های پایین

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

گروه فیزیک، دانشکده علوم، دانشگاه اراک،38156 -8-8349، اراک، ایران

چکیده

مطالعة عامل اخترفیزیکی S، یکی از روش‌های تجزیه و تحلیل واکنش‌های گیراندازی تابشی پروتونی در چارچوب‌ نظری برای دماهای پایین می‌باشد. در این کار با استفاده از مدل پتانسیل وودز-ساکسون به‌مطالعة عددی واکنش گیراندازی تابشی پروتونی توسط اکسیژن۱۷ پرداخته‌ شده است. ابتدا عامل اخترفیزیکیS  برای واکنش17O(p,γ)18F در انرژی‌های کم محاسبه شد و سپس با استفاده از عامل اخترفیزیکیS  نرخ واکنش به‌دست آورده شد. همچنین در این کار شدت گذار چهارقطبی الکتریکی B[E2] از حالت‌های برانگیخته هسته 18F بررسی شده است. مشخص شد که B[E2] به انرژی و اسپین حالت‌های برانگیخته وابسته می‌باشد. نتایج به‌دست آمده در خصوص عامل اخترفیزیکیS، نرخ واکنش و شدت گذار در محدودة انرژی keV 200-500 با داده‌های تجربی و سایر مدل‌های نظری مقایسه و مطابقت خوبی داشتند. همچنین عامل اخترفیزیکی S در انرژی صفر با روش برون‌یابی برای تراز +(2/5) محاسبه و مقدار keV b 8/4 S(0)= ارزیابی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical study of transition rate and B(E2) transition strengths for 17O(p,γ)18F reaction

نویسندگان [English]

  • Amir Hooman Aranpour
  • Hassan Khalili
  • Shahla Nahidinezhad
  • Masoumeh Dalvand
Department of Physics, Faculty of Science, Arak University, Arak 8349-8-38156, Iran
چکیده [English]

The study of the astrophysical S-factor is one of the methods of analyzing proton radiation capture reactions in the theoretical framework for low temperatures. In this research, we have numerically studied the proton radiative capture reaction by 17O using the Woods-Saxon potential model.
First, the astrophysical S-factor reaction was calculated at low energies, and then the reaction rate of was obtained from the astrophysical S-factor. Also, in this study, the electrical quadrupole transition strength (B[E2]) for excited states 18F nucleus has been calculated. We found that B[E2] depends on the energy and spin of the excited states.
The results corresponding to the astrophysical S-factor, reaction rate and transition strength at energy range of 200-500 keV were compared with experimental data and other theoretical models and were in good agreement. Also, the astrophysical S-factor at zero energy was calculated by the extrapolation method for (5/2)+ state and S(0)=4/8 keV b.

کلیدواژه‌ها [English]

  • Potential model
  • Radiative capturing reaction
  • Astrophysical factor S
  • Electrical transition strength
[1] P.A. Crowther, O. Schnurr, R. Hirschi, N. Yusof, R.J. Parker, S.P. Goodwin, H.A. Kassim, The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M⊙ stellar mass limit, Monthly Notices of the Royal Astronomical Society, 408 (2010) 731-751. https://doi.org/10.1111/j.1365-2966.2010.17167.x
[2] A.A. Aziz, H.A. Kassim, M.F. Zamrun, Analysis of cross section and astrophysical S-factor at low energies, AIP Conference Proceedings, American Institute of Physics, (2013), pp. 65-69. https://doi.org/10.1063/1.4803570
[3] E.G. Adelberger, A. García, R.H. Robertson, K. Snover, A. Balantekin, K. Heeger, M. Ramsey-Musolf, D. Bemmerer, A. Junghans, C. Bertulani, Solar fusion cross sections. II. The p p chain and CNO cycles, Reviews of Modern Physics, 83 (2011) 195. https://doi.org/10.1103/RevModPhys.83.195
[4] G. Gyürky, A. Ornelas, Z. Fülöp, Z. Halász, G.G. Kiss, T. Szücs, R. Huszánk, I. Hornyák, I. Rajta, I. Vajda, Cross section measurement of the astrophysically important 17O (p, γ) 18F  reaction in a wide energy range, Physical Review C, 95 (2017) 035805. https://doi.org/10.1103/PhysRevC.95.035805
[5] R. Ghasemi, H. Sadeghi, S-factor for radiative capture reactions for light nuclei at astrophysical energies, Results in Physics, 9 (2018) 151-165. https://doi.org/10.1016/j.rinp.2018.02.033
[6] H. Khalili, M. Mohammadzadeh, The astrophysical S-factor of proton radiative capture on triton, New Astronomy, 86 (2021) 101572. https://doi.org/10.1016/j.newast.2021.101572
[7] K. Alder, A. Bohr, T. Huus, B. Mottelson, A. Winther, Study of nuclear structure by electromagnetic excitation with accelerated ions, Reviews of modern physics, 28 (1956) 432. https://doi.org/10.1103/RevModPhys.28.432
[8] A. Bohr, Mottelson, Nuclear structure, Benjamin, New York, 1975.
[9] C. Bertulani, G. Baur, Electromagnetic processes in relativistic heavy ion collisions, Nuclear Physics A, 458 (1986) 725-744. https://doi.org/10.1016/03759474(86)90197-1
[10] J. Huang, C. Bertulani, V. Guimaraes, Radiative capture of nucleons at astrophysical energies with single-particle states, Atomic Data and Nuclear Data Tables, 96 (2010) 824-847. https://doi.org/10.1016/j.adt.2010.06.004
[11] C. Bertulani, RADCAP: A potential model tool for direct capture reactions, Computer Physics Communications, 156 (2003) 123-141. https://doi.org/10.1016/S0010-4655(03) 441-551
[12] A. Bohr, B. Mottelson, Nuclear Structure, Vol. I Benjamin, New York, 1969, Nuclear Structure, 2.
[13] R.D. Woods, D.S. Saxon, Diffuse surface optical model for nucleon-nuclei scattering, Physical Review, 95 (1954) 577. https://doi.org/10.1103/PhysRev.95.577
[14] M. Aygun, Alternative Potentials Analyzing the Scattering Cross Sections of 7, 9, 10, 11, 12, 14Be Isotopes from a 12C target: Proximity Potentials, Journal of the Korean Physical Society, 73 (2018) 1255-1262. https://doi.org/10.3938/jkps.73.1255
[15] M. Capak, B. Gönül, Remarks on the Woods–Saxon potential, Modern Physics Letters A, 31 (2016) 1650134. https://doi.org/10.1142/S0217732316501340
[16] R. Kharab, Dependence of B (E2) and B (M1) transition strengths on energy and spin of excited states of 18F, Modern Physics Letters A, 33 (2018) 1850188. https://doi.org/10.1142/S0217732318501882
[17] M. Born, Physical aspects of quantum mechanics, Nature, 119 (1927) 354-357. https://doi.org/ :10.1038/119354A0
[18] E. Yildiz, A. Aydin, I.H. Sarpun, E. Tel, Calculation of cross-sections and astrophysical s-factors for the 63Cu (α, n) and 63Cu (α, γ) reactions, EPJ Web of Conferences, EDP Sciences, 2015, pp. 01010. https://doi.org/10.1051/epjconf/201510001010
[19] A. Moghadasi, H. Sadeghi, R. Pourimani, Calculation of astrophysical S-factor in reaction 13C (p, γ) 14 N ^13C(p,γ)^14N for first resonance levels, Astrophysics and Space Science, 363 (2018) 1-6. [In Persian] https://doi.org/10.1016/0010-4655(82)90070-4
[20] J.R. Newton, C. Iliadis, A. Champagne, J. Cesaratto, S. Daigle, R. Longland, Measurement of 17O (p, γ) 18F between the narrow resonances at E r lab= 193 and 519 keV, Physical Review C, 81 (2010) 045801. https://doi.org/10.1103/PhysRevC.81.045801
[21] C. Fox, C. Iliadis, A. Champagne, R. Fitzgerald, R. Longland, J. Newton, J. Pollanen, R. Runkle, Thermonuclear reaction rate of 17O (p, γ) 18F, Physical Review C, 71 (2005) 055801. https://doi.org/10.1103/PhysRevC.71.055801
[22] U. Hager, L. Buchmann, B. Davids, J. Fallis, B. Fulton, N. Galinski, U. Greife, D. Hutcheon, D. Ottewell, A. Rojas, Measurement of the 17 O (p, γ) 18 F reaction rate at astrophysically relevant energies, Physical Review C, 85 (2012) 035803. https://doi.org/10.1103/PhysRevC.85.035803
[23] C. Rolfs, Spectroscopic factors from radiative capture reactions, Nuclear Physics A, 217 (1973) 29-70. https://doi.org/10.1016/0375-9474(73)90622-2
[24] C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye, C. Leclercq-Willain, A. Coc, S. Barhoumi, P. Aguer, C. Rolfs, A compilation of charged-particle induced thermonuclear reaction rates, Nuclear Physics A, 656 (1999) 3-183. https://doi.org/10.1016/S0375-9474(99) 30-5
[25] J. Huang, C. Bertulani, V. Guimaraes, Radiative capture of nucleons at astrophysical energies with single-particle states, Atomic Data and Nuclear Data Tables, 96 (2010) 824-847. https://doi.org/10.1016/j.adt.2010.06.004