Structural and electronic properties of InSb1-xBix(x=0, 0.25, 0.5, 0.75, 1)

Document Type : Full length research Paper

Authors

1 Department of .physics,. Faculty of Basic Science, Lorestan University, Khorramabad, Lorestan, Iran

2 Saba Ahmadvand1, Shirin Namjoo,1, Mahsa ganji1, Mehrdad Dadsetani1

Abstract

In this study, the structural properties and electronic band structure of InSb1-xBix (x=0, 0.25, 0.5, 0.75, 1) alloys are investigated using density functional theory utilizing the WIEN2K package. The results related to the structural properties showed that the lattice constant, as a function of x, is in excellent agreement with Vegard's linear rule. Calculations involving the investigation of the band structure using the mBJGGA exchange-correlation potential reveal that InSb is a semiconductor with a small gap , exhibiting a normal band order at the Γ point while InBi is a metal that exhibits a band inversion at the Γ point. By adding Bi to InSb and forming InSb0.75Bi0.25 and InSb0.25Bi0.75 alloys, the normal band order and the gap at the Γ point disappear. This leads to a transition from a narrow band gap semiconductor with normal band order (InSb) to a gapless semiconductor (InSb0.75Bi0.25) and a metal (InSb0.25Bi0.75) with an inverted band order. By replacing half of the Sb atoms with Bi atoms in InSb and creating the InSb0.5Bi0.5 alloy, not only is an inverted band order observed at the Γ point but a band gap is also created and a transition from a conventional semiconductor to a topological semiconductor occurs.

Keywords

Main Subjects


 
[1]. C. Kittel, Introduction to Solid State Physics, Wiley (1996).
 
[2]. N. Kuze, E.G. Camargo, K. Ueno, T. Morishita, M. Sato, M. Kurihara, H. Endo, K. Ishibashi, High performance miniaturized InSb photovoltaic infrared sensors operating at room temperature, Journal of Crystal Growth, 301-302 (2007) 997-1000.
 
[3]. P. Carrington, E. Repiso, Q. Lu, H. Fujita, A.R.J. Marshall, Q. Zhuang, A. Krier, InSb-based quantum dot nanostructures for mid-infrared photonic devices, SPIE 9919 (2016) 99190C.
[4] S.-H. Park, H.-S. Kim, H.-S. Shin, H.-D. Kim, Y.-H. Cho, Y.-K. Kim, Development of InSb semiconductor detector for high resolution radiation measurement, Journal of the Korean Physical Society, 58 (2011) 1577-1580.
 
[5] T. Ashley, M.T. Emeny, D.G. Hayes, K.P. Hilton, R. Jefferies, J.O. Maclean, S.J. Smith, A.W.H. Tang, D.J. Wallis, P.J. Webber, High-performance InSb based quantum well field effect transistors for low-power dissipation applications,  2009 IEEE International Electron Devices Meeting (IEDM), 2009, pp. 1-4.
 
[6] S. Namjoo, A.S.H. Rozatian, I. Jabbari, Influence of lattice expansion on the topological band order of InAsxSb1−x (x=0, 0.25, 0.5, 0.75, 1) alloys, Journal of Alloys and Compounds, 628 (2015) 458-463.
 
[7] Z. Zhu, G.W. Winkler, Q. Wu, J. Li, A.A. Soluyanov, Triple Point Topological Metals, Physical Review X, 6 (2016) 031003. https://doi.org/10.1103/PhysRevX.6.031003
 
[8] S. Namjoo, A.S.H. Rozatian, I. Jabbari, P. Puschnig, Optical study of narrow band gap InAsxSb1-x (x=0, 0.25, 0.5, 0.75, 1) alloys,, Physical Review B, 91 (2015) 205205. https://doi.org/10.1103/PhysRevB.91.205205
[9] D.J. Singh, L. Nordstrom, Planewaves, Pseudopotentials, and the LAPW method, Springer Science & Business Media (2006).
 
[10] S. Blügel, G. Bihlmayer, Full-potential linearized augmented planewave method, Computational nanoscience: do it yourself, 31 (2006) 85-129.
 
[11] P. Blaha, K. Schwarz, G.K. Madsen, D. Kvasnicka, J. Luitz, wien2k, An augmented plane wave+ local orbitals program for calculating crystal properties, 60 (2001).
 
[12] P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Physical Review B, 49 (1994) 16223-16233. http://doi.org/10.1103/PhysRevB.49.16223
 
[13] F. Tran, P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, Physical Review Letters, 102 (2009) 226401. https://doi.org/10.1103/PhysRevLett.102.226401
 
[14] Z. Wu, R.E. Cohen, More accurate generalized gradient approximation for solids, Physical Review B, 73 (2006) 235116. https://doi.org/10.1103/PhysRevB.73.235116
 
 [15] O. Madelung, Semiconductors: data handbook, Springer Science & Business Media (2004).
 
[16] M. Ferhat, A. Zaoui, Structural and electronic properties of III-V bismuth compounds, Physical Review B, 73 (2006) 115107.
 
[17] M.K. Rajpalke, W.M. Linhart, K.M. Yu, M. Birkett, J. Alaria, J.J. Bomphrey, S. Sallis, L.F.J. Piper, T.S. Jones, M.J. Ashwin, T.D. Veal, Bi-induced band gap reduction in epitaxial InSbBi alloys, Applied Physics Letters, 105 (2014).
 
[18] S. Kalvoda, B. Paulus, P. Fulde, H. Stoll, Influence of electron correlations on ground-state properties of III-V semiconductors, Physical Review B, 55 (1997) 4027-4030. https://doi.org/10.1103/PhysRevB.55.4027
 
[19] S.Q. Wang, H.Q. Ye, A plane-wave pseudopotential study on III–V zinc-blende and wurtzite semiconductors under pressure, Journal of Physics: Condensed Matter, 14 (2002) 9579. https://doi.org/10.1088/0953-8984/14/41/313
[20] P. Saeidi, M.H. Shahidi kaviyani, S. Yalameha, The structural and elastic properties of InSb1-xBix alloys, Computational Condensed Matter, 18 (2019) e00358.
 
[21] A. Assali, M. Bouslama, L. Chaabane, A. Mokadem, F. Saidi, Structural and opto-electronic properties of InP1−xBix bismide alloys for MID−infrared optical devices: A DFT + TB-mBJ study, Physica B: Condensed Matter, 526 (2017) 71-79.
 
[22] A. Zaoui, D. Madouri, M. Ferhat, First-principles study of the ground state stability of III–V bismuth compounds, Philosophical Magazine Letters, 89 (2009) 807-813.
 
[23] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, 77 (1996) 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
[24] L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome, Zeitschrift für Physik, 5 (1921) 17-26. https://doi.org/10.1007/BF01349680
 
[25] N. Peyghambarian, S.W. Koch, A. Mysyrowicz, Introduction to semiconductor optics, Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1993).
 
[26] W. Feng, D. Xiao, Y. Zhang, Y. Yao, Half-Heusler topological insulators: A first-principles study with the Tran-Blaha modified Becke-Johnson density functional, Physical Review B, 82 (2010) 235121.
https://doi.org/10.1103/PhysRevB.82.235121
 
[27] K. Hachelafi, B. Amrani, F.E.H. Hassan, S. Hiadsi, Theoretical study of InAs, InSb and their alloys InAsxSb1-x,  Advances in Condensed Matter Physics, India (2009).