[1]. C. Kittel, Introduction to Solid State Physics, Wiley (1996).
[2]. N. Kuze, E.G. Camargo, K. Ueno, T. Morishita, M. Sato, M. Kurihara, H. Endo, K. Ishibashi, High performance miniaturized InSb photovoltaic infrared sensors operating at room temperature, Journal of Crystal Growth, 301-302 (2007) 997-1000.
[3]. P. Carrington, E. Repiso, Q. Lu, H. Fujita, A.R.J. Marshall, Q. Zhuang, A. Krier, InSb-based quantum dot nanostructures for mid-infrared photonic devices, SPIE 9919 (2016) 99190C.
[4] S.-H. Park, H.-S. Kim, H.-S. Shin, H.-D. Kim, Y.-H. Cho, Y.-K. Kim, Development of InSb semiconductor detector for high resolution radiation measurement, Journal of the Korean Physical Society, 58 (2011) 1577-1580.
[5] T. Ashley, M.T. Emeny, D.G. Hayes, K.P. Hilton, R. Jefferies, J.O. Maclean, S.J. Smith, A.W.H. Tang, D.J. Wallis, P.J. Webber, High-performance InSb based quantum well field effect transistors for low-power dissipation applications, 2009 IEEE International Electron Devices Meeting (IEDM), 2009, pp. 1-4.
[6] S. Namjoo, A.S.H. Rozatian, I. Jabbari, Influence of lattice expansion on the topological band order of InAsxSb1−x (x=0, 0.25, 0.5, 0.75, 1) alloys, Journal of Alloys and Compounds, 628 (2015) 458-463.
[8] S. Namjoo, A.S.H. Rozatian, I. Jabbari, P. Puschnig, Optical study of narrow band gap InAsxSb1-x (x=0, 0.25, 0.5, 0.75, 1) alloys,, Physical Review B, 91 (2015) 205205. https://doi.org/10.1103/PhysRevB.91.205205
[9] D.J. Singh, L. Nordstrom, Planewaves, Pseudopotentials, and the LAPW method, Springer Science & Business Media (2006).
[10] S. Blügel, G. Bihlmayer, Full-potential linearized augmented planewave method, Computational nanoscience: do it yourself, 31 (2006) 85-129.
[11] P. Blaha, K. Schwarz, G.K. Madsen, D. Kvasnicka, J. Luitz, wien2k, An augmented plane wave+ local orbitals program for calculating crystal properties, 60 (2001).
[12] P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Physical Review B, 49 (1994) 16223-16233. http://doi.org/10.1103/PhysRevB.49.16223
[15] O. Madelung, Semiconductors: data handbook, Springer Science & Business Media (2004).
[16] M. Ferhat, A. Zaoui, Structural and electronic properties of III-V bismuth compounds, Physical Review B, 73 (2006) 115107.
[17] M.K. Rajpalke, W.M. Linhart, K.M. Yu, M. Birkett, J. Alaria, J.J. Bomphrey, S. Sallis, L.F.J. Piper, T.S. Jones, M.J. Ashwin, T.D. Veal, Bi-induced band gap reduction in epitaxial InSbBi alloys, Applied Physics Letters, 105 (2014).
[18] S. Kalvoda, B. Paulus, P. Fulde, H. Stoll, Influence of electron correlations on ground-state properties of III-V semiconductors, Physical Review B, 55 (1997) 4027-4030. https://doi.org/10.1103/PhysRevB.55.4027
[19] S.Q. Wang, H.Q. Ye, A plane-wave pseudopotential study on III–V zinc-blende and wurtzite semiconductors under pressure, Journal of Physics: Condensed Matter, 14 (2002) 9579. https://doi.org/10.1088/0953-8984/14/41/313
[20] P. Saeidi, M.H. Shahidi kaviyani, S. Yalameha, The structural and elastic properties of InSb1-xBix alloys, Computational Condensed Matter, 18 (2019) e00358.
[21] A. Assali, M. Bouslama, L. Chaabane, A. Mokadem, F. Saidi, Structural and opto-electronic properties of InP1−xBix bismide alloys for MID−infrared optical devices: A DFT + TB-mBJ study, Physica B: Condensed Matter, 526 (2017) 71-79.
[22] A. Zaoui, D. Madouri, M. Ferhat, First-principles study of the ground state stability of III–V bismuth compounds, Philosophical Magazine Letters, 89 (2009) 807-813.
[25] N. Peyghambarian, S.W. Koch, A. Mysyrowicz, Introduction to semiconductor optics, Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1993).
[26] W. Feng, D. Xiao, Y. Zhang, Y. Yao, Half-Heusler topological insulators: A first-principles study with the Tran-Blaha modified Becke-Johnson density functional, Physical Review B, 82 (2010) 235121.
https://doi.org/10.1103/PhysRevB.82.235121
[27] K. Hachelafi, B. Amrani, F.E.H. Hassan, S. Hiadsi, Theoretical study of InAs, InSb and their alloys InAsxSb1-x, Advances in Condensed Matter Physics, India (2009).