In this study, a CIGS solar cell with a Mo/Cu(In0.7Ga0.3)Se2(CIGS)/CdS/ZnO/Al-doped ZnO (AZO) structure was simulated by Atlas silvaco-TCAD software. The photovoltaic characteristics of solar cells using CdS and ZnSe buffer layers were calculated and compared. Then, the photovoltaic characteristics were examined with different thicknesses of the ZnSe buffer layer. The 25 nm thickness was selected as the optimum thickness. After optimization of the ZnSe layer thickness, the photovoltaic characteristics of solar cells were evaluated by changing the conduction band offset (CBO). The highest CIGS solar cell conversion efficiency was obtained in the range from -0.5 eV to +0.5 eV for CBO. Finally, graphene was replaced with Al-doped ZnO (AZO) due to its high optical transparency, high carrier mobility, and proper mechanical properties. Graphene was used as a monolayer and multilayer as a transparent conductive oxide (TCO) layer. Simulations predicted the highest efficiency for solar cell structure based on Mo/CIGS/ZnSe/i-ZnO/monolayer graphene and the photovoltaic parameters were Jsc=38.64 mA/cm2, Voc=0.67 V, FF=79.33% and η=20.71%.
[1] V. Tyagi, N.A. Rahim, N. Rahim, JA/L. Selvaraj, Progress in solar PV technology: Research and achievement,, Renew. Sustain. Energy Rev, 20 (2013) 443-461. https://doi.org/10.1016/j.rser.2012.09.028.
[2] P. Reinhard, A. Chirilă, P. Blösch, F. Pianezzi, S. Nishiwaki, S. Buechelers, A.N. Tiwari, Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, (2012) 1-9. https://doi.org/10.1109/PVSC-Vol2.2012.6656789.
[3] C.-H. Chen, W.-C. Shih, C.-Y. Chien, C.-H. Hsu, Y.-H. Wu, C.-H. Lai, A promising sputtering route for one-step fabrication of chalcopyrite phase Cu (In, Ga) Se2 absorbers without extra Se supply, Solar energy materials and solar cells, 103 (2012) 25-29. https://doi.org/10.1016/j.solmat.2012.04.008.
[4] N. Khoshsirat, N.A.M. Yunus, M.N. Hamidon, S. Shafie, N. Amin, Analysis of absorber layer properties effect on CIGS solar cell performance using SCAPS, Optik, 126 (2015) 681-686. https://doi.org/10.1016/j.ijleo.2015.02.037.
[5] B. Farhadi, M. Naseri, Structural and physical characteristics optimization of a dual junction CGS/CIGS solar cell: A numerical simulation, Optik, 127 (2016) 10232-10237. https://doi.org/10.1016/j.ijleo.2016.08.029.
[6] H. Heriche, Z. Rouabah, N. Bouarissa, High-efficiency CIGS solar cells with optimization of layers thickness and doping, Optik, 127 (2016) 11751-11757. https://doi.org/10.1016/j.ijleo.2016.09.071.
[7] J.C. Park, M. Al-Jassim, S.W. Shin, J.H. Kim, T.W. Kim, Comprehensive characterization of CIGS absorber layers grown by one-step sputtering process, Ceramics International, 45 (2019) 4424-4430. https://doi.org/10.1016/j.ceramint.2018.11.120.
[8] K.-B. Kim, M. Kim, H.-C. Lee, S.-W. Park, C.-W. Jeon, Copper indium gallium selenide (CIGS) solar cell devices on steel substrates coated with thick SiO2-based insulating material, Materials Research Bulletin, 85 (2017) 168-175. https://doi.org/10.1016/j.materresbull.2016.09.018.
[9] S. Tobbeche, S. Kalache, M. Elbar, M.N. Kateb, M.R. Serdouk, Improvement of the CIGS solar cell performance: structure based on a ZnS buffer layer, Optical and Quantum Electronics, 51 (2019) 1-13. https://doi.org/10.1007/s11082-019-2000-z.
[10] K. Kacha, F. Djeffal, H. Ferhati, L. Foughali, A. Bendjerad, A. Benhaya, A. Saidi, Efficiency improvement of CIGS solar cells using RF sputtered TCO/Ag/TCO thin-film as prospective buffer layer, Ceramics international, 48 (2022) 20194-20200. https://doi.org/10.1016/j.ceramint.2022.03.298.
[11] S. Lee, E.S. Lee, T.Y. Kim, J.S. Cho, Y.J. Eo, J.H. Yun, A. Cho, Effect of annealing treatment on CdS/CIGS thin film solar cells depending on different CdS deposition temperatures, Solar Energy Materials and Solar Cells, 141 (2015) 299-308. https://doi.org/10.1016/j.solmat.2015.05.052.
[12] F.R. Ahmad, A. Yakimov, R.J. Davis, J.-H. Her, J.R. Cournoyer, N.M. Ayensu, Effect of thermal annealing on the properties of cadmium sulfide deposited via chemical bath deposition, Thin Solid Films, 535 (2013) 166-170. https://doi.org/10.1016/j.tsf.2012.10.085.
[13] S. Tripathi, P. Lohia, D. Dwivedi, Contribution to sustainable and environmental friendly non-toxic CZTS solar cell with an innovative hybrid buffer layer, Solar Energy, 204 (2020) 748-760. https://doi.org/10.1016/j.solener.2020.05.033.
[14] T.R. Rana, S. Kim, J. Kim, K. Kim, J.H. Yun, A Cd-reduced hybrid buffer layer of CdS/Zn (O, S) for environmentally friendly CIGS solar cells, Sustainable Energy & Fuels, 1 (2017) 1981-1990. https://doi.org/10.1039/C7SE00348J.
[15] V.B. Chu, D. Siopa, A. Debot, D. Adeleye, M. Sood, A. Lomuscio, M. Melchiorre, J. Guillot, N. Valle, B. El Adib, Waste-and Cd-free inkjet-printed Zn (O, S) buffer for Cu (In, Ga)(S, Se) 2 thin-film solar cells, ACS Applied Materials & Interfaces, 13 (2021) 13009-13021. https://doi.org/10.1021/acsami.0c16860.
[16] B. Lin, Q. Sun, C. Zhang, H. Deng, W. Xie, J. Tang, Q. Zheng, J. Wu, H. Zhou, S. Cheng, 9.3% Efficient Flexible Cu2ZnSn (S, Se) 4 Solar Cells with High‐Quality Interfaces via Ultrathin CdS and Zn0. 8Sn0. 2O Buffer Layers, Energy Technology, 10 (2022) 2200571. https://doi.org/10.1002/ente.202200571.
[17] S. Ouédraogo, M.B. Kébré, A.T. Ngoupo, D. Oubda, F. Zougmoré, Comprehensive Analysis of CuIn1-xGaxSe2 Based Solar Cells with Zn1-yMgyO Buffer Layer, Materials Sciences and Applications, 11 (2020) 880-892. https://doi.org/10.4236/msa.2020.1112058.
[18] M. Moradi, R. Teimouri, M. Saadat, M. Zahedifar, Buffer layer replacement: a method for increasing the conversion efficiency of CIGS thin film solar cells, Optik, 136 (2017) 222-227. https://doi.org/10.1016/j.ijleo.2017.02.037.
[19] P. Salomé, J. Keller, T. Törndahl, J. Teixeira, N. Nicoara, R.-R. Andrade, D. Stroppa, J. González, M. Edoff, J. Leitão, CdS and Zn1− xSnxOy buffer layers for CIGS solar cells, Solar Energy Materials and Solar Cells, 159 (2017) 272-281. https://doi.org/10.1016/j.solmat.2016.09.023.
[20] O. Toma, L. Ion, S. Iftimie, V. Antohe, A. Radu, A. Raduta, D. Manica, S. Antohe, Physical properties of rf-sputtered ZnS and ZnSe thin films used for double-heterojunction ZnS/ZnSe/CdTe photovoltaic structures, Applied Surface Science, 478 (2019) 831-839. https://doi.org/10.1016/j.apsusc.2019.02.032.
[21] M.K. Hossain, D. Samajdar, R.C. Das, A. Arnab, M.F. Rahman, M. Rubel, M.R. Islam, H. Bencherif, R. Pandey, J. Madan, Design and simulation of Cs2BiAgI6 double perovskite solar cells with different electron transport layers for efficiency enhancement, Energy & Fuels, 37 (2023) 3957-3979. https://doi.org/10.1021/acs.energyfuels.3c00181.
[22] M.H. Yousuf, F. Saeed, H.A. Tauqeer, Numerical Investigation of Cu2O as Hole transport layer for High-Efficiency CIGS solar cell, (2022). https://doi.org/10.20944/preprints202110.0326.v2.
[23] M.M.A. Moon, S.R.I. Biplab, M.H. Ali, M.F. Rahman, M.S. Rana, A. Kuddus, Computational investigation of Zn-based single buffer layers toward Cd-free high-efficiency CIGS thin film solar cells, Journal of Applied Science and Engineering, 26 (2023) 1799-1808. http://dx.doi.org/10.6180/jase.202312_26(12).0012.
[24] F. Elhady, T.M. Abdolkader, M. Fedawy, Simulation of new thin film Zn (O, S)/CIGS solar cell with bandgap grading, Engineering Research Express, 5 (2023) 025027. https://doi.org/10.1088/2631-8695/accf60.
[25] M. Moustafa, T. Al Zoubi, S. Yasin, Optoelectronics Simulation of CIGS-Based Solar Cells Using a Cd-Free Nontoxic ZrS x Se2− x as a Novel Buffer Layer, Brazilian Journal of Physics, 52 (2022) 141. https://doi.org/10.1007/s13538-022-01146-z.
[26] A. Sylla, S. Touré, J.-P. Vilcot, Numerical modeling and simulation of CIGS-based solar cells with ZnS buffer layer, Open Journal of Modelling and Simulation, 5 (2017) 218. https://doi.org/10.4236/ojmsi.2017.54016.
[28] L. Yin, K. Zhang, H. Luo, G. Cheng, X. Ma, Z. Xiong, X. Xiao, Highly efficient graphene-based Cu (In, Ga) Se 2 solar cells with large active area, Nanoscale, 6 (2014) 10879-10886. http://dx.doi.org/10.1039/C4NR02988G.
[29] S. Tasch, A. Niko, G. Leising, U. Scherf, Highly efficient electroluminescence of new wide band gap ladder‐type poly (para‐phenylenes), Applied physics letters, 68 (1996) 1090-1092. https://doi.org/10.1063/1.115722.
[30] X. Shen, M. Yang, C. Zhang, Z. Qiao, H. Wang, C. Tang, Utilizing magnetron sputtered AZO-ITO bilayer structure as transparent conducting oxide for improving the performance of flexible CIGS solar cell, Superlattices and Microstructures, 123 (2018) 251-256. https://doi.org/10.1016/j.spmi.2018.09.001.
[31] S. Kasap, H. Khaksaran, S. Çelik, H. Özkaya, C. Yanık, I.I. Kaya, Controlled growth of large area multilayer graphene on copper by chemical vapour deposition, Physical Chemistry Chemical Physics, 17 (2015) 23081-23087. https://doi.org/10.1039/C5CP01436K.
[32] L. Lancellotti, E. Bobeico, M. Della Noce, L.V. Mercaldo, I. Usatii, P.D. Veneri, G.V. Bianco, A. Sacchetti, G. Bruno, Graphene as non conventional transparent conductive electrode in silicon heterojunction solar cells, Applied Surface Science, 525 (2020) 146443. https://doi.org/10.1016/j.apsusc.2020.146443.
[33] Z. Shi, A.H. Jayatissa, The impact of graphene on the fabrication of thin film solar cells: Current status and future prospects, Materials, 11 (2017) 36. https://doi.org/10.3390/ma11010036.
[34] S.R. Fatemi Shariat Panahi, A. Abbasi, V. Ghods, M. Amirahmadi, Analysis and improvement of CIGS solar cell efficiency using multiple absorber substances simultaneously, Journal of Materials Science: Materials in Electronics, 31 (2020) 11527-11537. https://doi.org/10.1007/s10854-020-03700-4.
[35] A. Srivastava, P. Dua, T. Lenka, S. Tripathy, Numerical simulations on CZTS/CZTSe based solar cell with ZnSe as an alternative buffer layer using SCAPS-1D, Materials Today: Proceedings, 43 (2021) 3735-3739. https://doi.org/10.1016/j.matpr.2020.10.986.
[36] A. Daraie, A. Fattah, Performance improvement of perovskite heterojunction solar cell using graphene, Optical Materials, 109 (2020) 110254. https://doi.org/10.1016/j.optmat.2020.110254.
[37] R. Kumari, M. Mamta, R. Kumar, Y. Singh, V.N. Singh, 24% Efficient, Simple ZnSe/Sb2Se3 Heterojunction Solar Cell: An Analysis of PV Characteristics and Defects, ACS omega, 8 (2022) 1632-1642. https://doi.org/10.1021/acsomega.2c07211.
[38] K. Patel, P.K. Tyagi, Multilayer graphene as a transparent conducting electrode in silicon heterojunction solar cells, AIP advances, 5 (2015). https://doi.org/10.1063/1.4927545.
[39] A. Mohamed, H. Mohamed, Modelling of high-efficiency substrate CIGS solar cells with ultra-thin absorber layer, Indian Journal of Physics, 94 (2020) 1725-1732. https://doi.org/10.1007/s12648-019-01626-0.
[40] S. Bechlaghem, B. Zebentout, Z. Benamara, The major influence of the conduction-band-offset on Zn (O, S)/CuIn0. 7Ga0. 3Se2 solar cells, Results in Physics, 10 (2018) 650-654. https://doi.org/10.1016/j.rinp.2018.07.006.
[41] A. Bahfir, M. Boumaour, Z. Chaieb, H. Labeche, Improved performance of Silicon solar cells by ZnMgO front layer, Nanomaterials Science & Engineering, 2 (2020) 148-153. https://doi.org/10.34624/nmse.v2i4.19557.
[42] Y. Chen, X. Tan, S. Peng, C. Xin, A.E. Delahoy, K.K. Chin, C. Zhang, The influence of conduction band offset on CdTe solar cells, Journal of Electronic Materials, 47 (2018) 1201-1207. https://doi.org/10.1007/s11664-017-5850-9.
[43] J. Weber, V. Calado, M. Van De Sanden, Optical constants of graphene measured by spectroscopic ellipsometry, Applied physics letters, 97 (2010). https://doi.org/10.1063/1.3475393.
[44] R. Treharne, K. Hutchings, D. Lamb, S. Irvine, D. Lane, K. Durose, Combinatorial optimization of Al-doped ZnO films for thin-film photovoltaics, Journal of Physics D: Applied Physics, 45 (2012) 335102. https://doi.org/10.1088/0022-3727/45/33/335102.
[45] Q.M. Al-Bataineh, M. Telfah, A.A. Ahmad, A.M. Alsaad, I.A. Qattan, H. Baaziz, Z. Charifi, A. Telfah, Synthesis, crystallography, microstructure, crystal defects, optical and optoelectronic properties of ZnO: CeO2 mixed oxide thin films, Photonics, 7 (2020) 112. https://doi.org/10.3390/photonics7040112.
[47] L.A. Kosyachenko, X. Mathew, P. Paulson, V.Y. Lytvynenko, O. Maslyanchuk, Optical and recombination losses in thin-film Cu (In, Ga) Se2 solar cells, Solar energy materials and solar cells, 130 (2014) 291-302. https://doi.org/10.1016/j.solmat.2014.07.019.
[48] M. Houshmand, M.H. Zandi, N.E. Gorji, Modeling of optical losses in graphene contacted thin film solar cells, Materials Letters, 164 (2016) 493-497. https://doi.org/10.1016/j.matlet.2015.11.050.
[49] H. Mohamed, M.R. Ahmed, S.S. Ali, W. Mohamed, Theoretical Studies of Thin-Film Solar Cells based on CdTe with different Window-Layers, Int. J. Thin. Fil. Sci. Tec, 9 (2020) 175-183.
[50] H. Mohamed, Dependence of efficiency of thin-film CdS/CdTe solar cell on optical and recombination losses, Journal of applied Physics, 113 (2013). https://doi.org/10.1063/1.4794201.
[51] H. Mohamed, A. Mohamed, H. Ali, Theoretical study of ZnS/CdS bi-layer for thin-film CdTe solar cell, Materials Research Express, 5 (2018) 056411. https://doi.org/10.1088/2053-1591/aac5ae.
Vahidian, F., & Baghshahi, S. (2024). Simulation and investigation of environmentally friendly CIGS solar cell. Journal of Research on Many-body Systems, 13(4), 1-16. doi: 10.22055/jrmbs.2024.18900
MLA
Fatemeh Vahidian; Saeid Baghshahi. "Simulation and investigation of environmentally friendly CIGS solar cell". Journal of Research on Many-body Systems, 13, 4, 2024, 1-16. doi: 10.22055/jrmbs.2024.18900
HARVARD
Vahidian, F., Baghshahi, S. (2024). 'Simulation and investigation of environmentally friendly CIGS solar cell', Journal of Research on Many-body Systems, 13(4), pp. 1-16. doi: 10.22055/jrmbs.2024.18900
VANCOUVER
Vahidian, F., Baghshahi, S. Simulation and investigation of environmentally friendly CIGS solar cell. Journal of Research on Many-body Systems, 2024; 13(4): 1-16. doi: 10.22055/jrmbs.2024.18900