The study of dynamical phase transitions of a random walker on a one- dimensional lattice with reflecting boundaries

Document Type : Full length research Paper

Author

Department of physics, Hamedan Branch, Islamic Azad University, Hamedan, Iran

Abstract

In this paper, we solve a simple model that supports a dynamic phase transition and show conditions for the existence of the transition. we study dynamical phase transitions of a random walker which moves on a one-dimensional lattice with reflecting boundaries. The dynamical activity, which is defined as the number of configuration changes in a dynamical trajectory is considered as the order parameter. We study the dynamical phases in the long-time limit by calculating the scaled cummulant generating function of the activity. It turs out that the system consists of six dynamical phases with both continuous and discontinuous phase transitions. Numerical investigations confirm our analitycal results in the thermodynamic limit.

Keywords

Main Subjects


 

 

  • J. Harris, A. Rakos, G.M. Schutz, Current fluctuations in the zero-range process with open boundaries, Journal of Statistical Mechanics: Theory and Experiment, P08003 (2005). 10.1088/1742-5468/2005/08/P08003

 

  • Lecomte, C. Appert-Rolland, F. van Wijland, Thermodynamic formalism for systems with Markov dynamics, Journal of Statistical Physics 127 (2007) 51-106. https://doi.org/10.1007/s10955-006-9254-0
  • Ruelle, Thermodynamic Formalism (Addison-Wesley, Reading, (1978).
  • P. Garrahan, R.L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk, F. van Wijland, Dynamical first-order phase transition in kinetically constrained models of glasses, Physical Review Letters 98 (2007) 195702. https://doi.org/10.1103/PhysRevLett.98.195702
  • O. Hedges, R.L. Jack, J.P. Garrahan, and D. Chandler, Dynamical order-disorder in atomistic models of structural glass formers, Science 323 (2009) 1309-1313. https://doi.org/10.1126/science.1166665
  • S.J.S. Mey, P.L. Geissler, J.P. Garrahan, Rare-event trajectory ensemble analysis reveals metastable dynamical phases in lattice proteins, Physical Review E 89 (2014) 032109. https://doi.org/10.1103/PhysRevE.89.032109
  • L. Jack, P. Sollich, Large deviations and ensembles of trajectories in stochastic models, Progress of Theoretical Physics Supplement 184 (2010) 304-317. https://doi.org/10.1143/PTPS.184.304
  • Lecomte, J.P. Garrahan, F. van Wijland, Inactive dynamical phase of a symmetric exclusion process on a ring, J. Phys. A: Math. Theor 45 (2012) 175001. 10.1088/1751-8113/45/17/175001
  • Touchette, The large deviation approach to statistical mechanics, Physics Reports 478 (2009) 1-69. 10.1016/j.physrep.2009.05.002
  • Lazarescu, Ph.D. thesis, Universit ́e Pierre et Marie Curie-Paris VI (2013). arXiv:1311.7370
  • Torkaman, F.H. Jafarpour, Rare-event trajectory ensemble approach to study dynamical phase transitions in the zero temperature Glauber model, Journal of Statistical Mechanics: Theory and Experiment, (2015) P01007. https://doi.org/10.1088/1742-5468/2015/01/P01007
  • Kurchan, Fluctuation theorem for stochastic dynamics, Journal of Physics. A: Mathematical and General 31 (1998) 3719. https://doi.org/10.1088/0305-4470/31/16/003
  • Rakos, R.J. Harris, On the range of validity of the fluctuation theorem for stochastic Markovian dynamics, Journal of Statistical Mechanics; Theory and Experiment, (2008) P05005. 10.1088/1742-5468/2008/05/P05005
  • L. Lebowitz, H. Spohn, A Gallavotti–Cohen-Type symmetry in the large deviation functional for stochastic dynamics, Journal of Statistical Physics 95 (1999) 333. https://doi.org/10.1023/A:1004589714161
  • S. Ellis, Large deviations for a general class of random vectors, Annals of Probability 12 (1984) 1–12. https://doi.org/10.1214/aop/1176993370
  • R.T. Rockefeller. Convex Analysis. Princeton University Press, Princeton, (1970).
  • M. Schutz, Phase transitions and critical phenomena Academic, London, 19 (2001) 3.

 

 Crampe, E. Ragoucy, D. Simon, Matrix coordinate Bethe Ansatz: applications to XXZ and ASEP models, Journal of Physics A: Mathematical and Theoretical 44 (2011) 405003. https://doi.org/10.1088/1751-8113/44/40/405003