طراحی و شبیه سازی سلول خورشیدی پشت سرهم پراوسکایت-سیلیکون با بازدهی بالا

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 دانشکده مهندسی برق، دانشگاه آزاد اسلامی، واحد بجنورد، بجنورد، ایران

2 مؤسسه آموزش عالی بهار، مشهد، ایران

چکیده

موضوع این تحقیق در زمینه طراحی و شبیه‌سازی یک سلول خورشیدی پشت‌سرهم پرواسکایت-سیلیکون است. هدف از این تحقیق، کاهش تلفات حرارتی و افزایش بازدهی سلول است. در این کار، ما یک قطعه پشت‌سرهم تشکیل‌شده از دو سلول را با استفاده از شبیه‌ساز SCAPS طراحی کردیم؛ که سلول جلویی شامل لایه جاذب CH3NH3PbI3 با شکاف انرژی 1.55ev و سلول C-Si با شکاف انرژی 1.12ev به‌عنوان سلول پشتی می‌باشد. هر یک از این سلول‌ها به‌طور جداگانه شبیه‌سازی و بهینه‌سازی شده و سپس، ساختار پشت‌سرهم تشکیل‌شده از دو سلول را شبیه‌سازی کرده و ضخامت بهینه لایه جاذب پرواسکایت را برای شرایط تطبیق جریان در ساختار پشت‌سرهم یکپارچه دو ترمیناله (2T) به‌دست آوردیم. طیف عبوری از سلول پراوسکایت جهت تابیدن به سلول پایینی با استفاده از نرم‌افزار MATLAB به‌دست آمد. درنهایت، با جریان یکسان 21mA (در دو سلول بالا و پایین) شبیه سازی این ساختار به بازدهی %33.27 منتهی گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design and simulation of perovskite-silicon tandem solar cell with high efficiency

نویسندگان [English]

  • Akram Akbari 1
  • Sayyed-Hossein Keshmiri 2
  • Seyyed Amir Gohari 1
1 Department of Electrical Engineering, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
2 Bahar Institute of Higher Education, Mashhad, Iran
چکیده [English]

The subject of this research is the design and simulation of a perovskite-silicon tandem solar cell. The purpose of this research is to reduce heat loss and increase cell efficiency. In this work, we designed a tandem device consisting of two cells using the SCAPS simulator (Solar Cell Capacitor Simulator); The front cell comprised of CH3NH3PbI3 absorber layer (with a bandgap of 1.55 ev), and a C-Si cell (with 1.12 ev bandgap) was selected as the bottom cell. Each of two cells were simulated and optimized separately, and then, the tandem structure consisting of two cells was simulated and the optimal thickness of the perovskite absorber layer was determined for the current matching conditions in the a two-terminal (2T) monolithic structure. The transmission spectrum of the perovskite cell to radiate to the lower cell was obtained using MATLAB software. Finally, the simulation of this structure led to an efficiency of 33.27%.

کلیدواژه‌ها [English]

  • tandem solar cells
  • perovskite
  • PCE enhancement

[1] P.V. Kamat, Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion, Journal of Physical Chemistry C, 111 (2007) 2834-2860. https://doi.org/10.1021/jp066952u

[2] C. Li, M. Liu, N.G. Pschirer, M. Baumgarten, K. Müllen, Polyphenylene-based materials for organic photovoltaics, Chemical Reviews, 110 (2010) 6817-6855. https://doi.org/10.1021/cr100052z

[3] M.T. Islam, M.R. Jani, A.F. Islam, K.M. Shorowordi, S. Chowdhury, S.S. Nishat, S. Ahmed, Investigation of CsSn 0.5 Ge 0.5 I 3-on-Si tandem solar device utilizing SCAPS simulation, IEEE Transactions on Electron Devices, 68 (2021) 618-625. https://doi.org/10.1109/TED.2020.3045383

[4] S. Sarker, T. Islam, A. Rauf, H.A. Jame, M.R. Jani, S. Ahsan, M. Islam, S.S. Nishat, K.M. Shorowordi, S. Ahmed, A SCAPS simulation investigation of non-toxic MAGeI3-on-Si tandem solar device utilizing monolithically integrated (2-T) and mechanically stacked (4-T) configurations, Solar Energy, 225 (2021) 471-485. https://doi.org/10.1016/j.solener.2021.07.057

[5] L. Lin, P. Li, L. Jiang, Z. Kang, Q. Yan, H. Xiong, S. Lien, P. Zhang, Y. Qiu, Boosting efficiency up to 25% for HTL-free carbon-based perovskite solar cells by gradient doping using SCAPS simulation, Solar Energy, 215 (2021) 328-334.  https://doi.org/10.1016/j.solener.2020.12.059

[6] L.A. Frolova, A.I. Davlethanov, N.N. Dremova, I. Zhidkov, A.F. Akbulatov, E.Z. Kurmaev, S.M. Aldoshin, K.J. Stevenson, P.A. Troshin, Efficient and Stable MAPbI(3)-Based Perovskite Solar Cells Using Polyvinylcarbazole Passivation, J Phys Chem Lett, 11 (2020) 6772-6778. https://doi.org/10.1021/acs.jpclett.0c01776

[7] J.P. Mailoa, C.D. Bailie, E.C. Johlin, E.T. Hoke, A.J. Akey, W.H. Nguyen, M.D. McGehee, T. Buonassisi, A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction, Applied Physics Letters, 106 (2015).  https://doi.org/10.1063/1.4914179

[8] S. Albrecht, M. Saliba, J.P.C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature, Energy & Environmental Science, 9 (2016) 81-88. https://doi.org/10.1039/C5EE02965A

[9] J. Werner, C.-H. Weng, A. Walter, L. Fesquet, J.P. Seif, S. De Wolf, B. Niesen, C. Ballif, Efficient monolithic perovskite/silicon tandem solar cell with cell area> 1 cm2, The journal of physical chemistry letters, 7 (2016) 161-166. https://doi.org/10.1021/acs.jpclett.5b02686

 

[10] H. Shen, S.T. Omelchenko, D.A. Jacobs, S. Yalamanchili, Y. Wan, D. Yan, P. Phang, T. Duong, Y. Wu, Y. Yin, In situ recombination junction between p-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells, Science advances, 4 (2018) eaau9711. https://doi.org/10.1126/sciadv.aau9711

 

[11] K.A. Bush, A.F. Palmstrom, Z.J. Yu, M. Boccard, R. Cheacharoen, J.P. Mailoa, D.P. McMeekin, R.L. Hoye, C.D. Bailie, T. Leijtens, 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability, Nature Energy, 2 (2017) 1-7. https://doi.org/10.1038/nenergy.2017.9

[12] K.A. Bush, S. Manzoor, K. Frohna, Z.J. Yu, J.A. Raiford, A.F. Palmstrom, H.-P. Wang, R. Prasanna, S.F. Bent, Z.C. Holman, Minimizing current and voltage losses to reach 25% efficient monolithic two-terminal perovskite–silicon tandem solar cells, ACS Energy Letters, 3 (2018) 2173-2180. https://doi.org/10.1021/acsenergylett.8b01201

[13] F. Sahli, B.A. Kamino, J. Werner, M. Bräuninger, B. Paviet‐Salomon, L. Barraud, R. Monnard, J.P. Seif, A. Tomasi, Q. Jeangros, Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction, Advanced Energy Materials, 8 (2018) 1701609. https://doi.org/10.1002/aenm.201701609

[14] F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J.J. Diaz Leon, D. Sacchetto, Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency, Nature materials, 17 (2018) 820-826. https://doi.org/10.1038/s41563-018-0115-4

[15] J. Xu, C.C. Boyd, Z.J. Yu, A.F. Palmstrom, D.J. Witter, B.W. Larson, R.M. France, J. Werner, S.P. Harvey, E.J. Wolf, Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems, Science, 367 (2020) 1097-1104. https://doi.org/10.1126/science.aaz5074

 

[16] M.J. Namvar, M.H. Abbaspour-Fard, M. Rezaei Roknabadi, A. Behjat, M. Mirzaei, The effect of inserting combined Rubidium-Cesium cation on performance of perovkite solar cell FAMAPb (IBr) 3, Journal of Research on Many-body Systems, 8 (2019) 125-138. https://doi.org/10.22055/jrmbs.2018.13963

[17] M. Nejadzangeneh, M. Ghasemi, S.M.B. Ghorashi, Design, simulation and fabrication of perovskite solar cell based on V2O5/Ag/WO3 transparent electrode, Journal of Research on Many-body Systems, 13 (2023) 17-33. https://doi.org/10.22055/JRMBS.2023.18129

 

[18] J. Madan, R. Pandey, R. Sharma, Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell, Solar energy, 197 (2020) 212-221. https://doi.org/10 10.1016/j.solener.2020. 01.006.

[19] Y. Raoui, H. Ez-Zahraouy, N. Tahiri, O. El Bounagui, S. Ahmad, S. Kazim, Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study, Solar Energy, 193 (2019) 948-955. https://doi.org/10.1016/j.solener.2019.10.009

[20] Y. Zou, Y. Liang, C. Mu, J.P. Zhang, Enhancement of open‐circuit voltage of perovskite solar cells by interfacial modification with p‐aminobenzoic acid, Advanced Materials Interfaces, 7 (2020) 1901584. https://doi.org/10.1002/admi.201901584

[21] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nature energy, 2 (2017) 1-8. https://doi.org/10.1038/nenergy.2017

 

[1] P.V. Kamat, Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion, Journal of Physical Chemistry C, 111 (2007) 2834-2860. https://doi.org/10.1021/jp066952u
[2] C. Li, M. Liu, N.G. Pschirer, M. Baumgarten, K. Müllen, Polyphenylene-based materials for organic photovoltaics, Chemical Reviews, 110 (2010) 6817-6855. https://doi.org/10.1021/cr100052z
 
[3] M.T. Islam, M.R. Jani, A.F. Islam, K.M. Shorowordi, S. Chowdhury, S.S. Nishat, S. Ahmed, Investigation of CsSn 0.5 Ge 0.5 I 3-on-Si tandem solar device utilizing SCAPS simulation, IEEE Transactions on Electron Devices, 68 (2021) 618-625. https://doi.org/10.1109/TED.2020.3045383
 
[4] S. Sarker, T. Islam, A. Rauf, H.A. Jame, M.R. Jani, S. Ahsan, M. Islam, S.S. Nishat, K.M. Shorowordi, S. Ahmed, A SCAPS simulation investigation of non-toxic MAGeI3-on-Si tandem solar device utilizing monolithically integrated (2-T) and mechanically stacked (4-T) configurations, Solar Energy, 225 (2021) 471-485. https://doi.org/10.1016/j.solener.2021.07.057
 
[5] L. Lin, P. Li, L. Jiang, Z. Kang, Q. Yan, H. Xiong, S. Lien, P. Zhang, Y. Qiu, Boosting efficiency up to 25% for HTL-free carbon-based perovskite solar cells by gradient doping using SCAPS simulation, Solar Energy, 215 (2021) 328-334.  https://doi.org/10.1016/j.solener.2020.12.059
 
[6] L.A. Frolova, A.I. Davlethanov, N.N. Dremova, I. Zhidkov, A.F. Akbulatov, E.Z. Kurmaev, S.M. Aldoshin, K.J. Stevenson, P.A. Troshin, Efficient and Stable MAPbI(3)-Based Perovskite Solar Cells Using Polyvinylcarbazole Passivation, J Phys Chem Lett, 11 (2020) 6772-6778. https://doi.org/10.1021/acs.jpclett.0c01776
 
[7] J.P. Mailoa, C.D. Bailie, E.C. Johlin, E.T. Hoke, A.J. Akey, W.H. Nguyen, M.D. McGehee, T. Buonassisi, A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction, Applied Physics Letters, 106 (2015).  https://doi.org/10.1063/1.4914179
 
[8] S. Albrecht, M. Saliba, J.P.C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature, Energy & Environmental Science, 9 (2016) 81-88. https://doi.org/10.1039/C5EE02965A
 
[9] J. Werner, C.-H. Weng, A. Walter, L. Fesquet, J.P. Seif, S. De Wolf, B. Niesen, C. Ballif, Efficient monolithic perovskite/silicon tandem solar cell with cell area> 1 cm2, The journal of physical chemistry letters, 7 (2016) 161-166. https://doi.org/10.1021/acs.jpclett.5b02686
 
[10] H. Shen, S.T. Omelchenko, D.A. Jacobs, S. Yalamanchili, Y. Wan, D. Yan, P. Phang, T. Duong, Y. Wu, Y. Yin, In situ recombination junction between p-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells, Science advances, 4 (2018) eaau9711. https://doi.org/10.1126/sciadv.aau9711
 
[11] K.A. Bush, A.F. Palmstrom, Z.J. Yu, M. Boccard, R. Cheacharoen, J.P. Mailoa, D.P. McMeekin, R.L. Hoye, C.D. Bailie, T. Leijtens, 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability, Nature Energy, 2 (2017) 1-7. https://doi.org/10.1038/nenergy.2017.9
 
[12] K.A. Bush, S. Manzoor, K. Frohna, Z.J. Yu, J.A. Raiford, A.F. Palmstrom, H.-P. Wang, R. Prasanna, S.F. Bent, Z.C. Holman, Minimizing current and voltage losses to reach 25% efficient monolithic two-terminal perovskite–silicon tandem solar cells, ACS Energy Letters, 3 (2018) 2173-2180. https://doi.org/10.1021/acsenergylett.8b01201
 
[13] F. Sahli, B.A. Kamino, J. Werner, M. Bräuninger, B. Paviet‐Salomon, L. Barraud, R. Monnard, J.P. Seif, A. Tomasi, Q. Jeangros, Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction, Advanced Energy Materials, 8 (2018) 1701609. https://doi.org/10.1002/aenm.201701609
 
 
[14] F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J.J. Diaz Leon, D. Sacchetto, Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency, Nature materials, 17 (2018) 820-826. https://doi.org/10.1038/s41563-018-0115-4
 
[15] J. Xu, C.C. Boyd, Z.J. Yu, A.F. Palmstrom, D.J. Witter, B.W. Larson, R.M. France, J. Werner, S.P. Harvey, E.J. Wolf, Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems, Science, 367 (2020) 1097-1104. https://doi.org/10.1126/science.aaz5074
 
[16] M.J. Namvar, M.H. Abbaspour-Fard, M. Rezaei Roknabadi, A. Behjat, M. Mirzaei, The effect of inserting combined Rubidium-Cesium cation on performance of perovkite solar cell FAMAPb (IBr) 3, Journal of Research on Many-body Systems, 8 (2019) 125-138. https://doi.org/10.22055/jrmbs.2018.13963
 
[17] M. Nejadzangeneh, M. Ghasemi, S.M.B. Ghorashi, Design, simulation and fabrication of perovskite solar cell based on V2O5/Ag/WO3 transparent electrode, Journal of Research on Many-body Systems, 13 (2023) 17-33. https://doi.org/10.22055/JRMBS.2023.18129
 
[18] J. Madan, R. Pandey, R. Sharma, Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell, Solar energy, 197 (2020) 212-221. https://doi.org/10 10.1016/j.solener.2020. 01.006.
 
[19] Y. Raoui, H. Ez-Zahraouy, N. Tahiri, O. El Bounagui, S. Ahmad, S. Kazim, Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study, Solar Energy, 193 (2019) 948-955. https://doi.org/10.1016/j.solener.2019.10.009
 
[20] Y. Zou, Y. Liang, C. Mu, J.P. Zhang, Enhancement of open‐circuit voltage of perovskite solar cells by interfacial modification with p‐aminobenzoic acid, Advanced Materials Interfaces, 7 (2020) 1901584. https://doi.org/10.1002/admi.201901584
 
[21] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nature energy, 2 (2017) 1-8. https://doi.org/10.1038/nenergy.2017