Document Type : Full length research Paper
Authors
1 Department of Electrical Engineering, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
2 Bahar Institute of Higher Education, Mashhad, Iran
Abstract
Keywords
Main Subjects
[1] P.V. Kamat, Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion, Journal of Physical Chemistry C, 111 (2007) 2834-2860. https://doi.org/10.1021/jp066952u
[2] C. Li, M. Liu, N.G. Pschirer, M. Baumgarten, K. Müllen, Polyphenylene-based materials for organic photovoltaics, Chemical Reviews, 110 (2010) 6817-6855. https://doi.org/10.1021/cr100052z
[3] M.T. Islam, M.R. Jani, A.F. Islam, K.M. Shorowordi, S. Chowdhury, S.S. Nishat, S. Ahmed, Investigation of CsSn 0.5 Ge 0.5 I 3-on-Si tandem solar device utilizing SCAPS simulation, IEEE Transactions on Electron Devices, 68 (2021) 618-625. https://doi.org/10.1109/TED.2020.3045383
[4] S. Sarker, T. Islam, A. Rauf, H.A. Jame, M.R. Jani, S. Ahsan, M. Islam, S.S. Nishat, K.M. Shorowordi, S. Ahmed, A SCAPS simulation investigation of non-toxic MAGeI3-on-Si tandem solar device utilizing monolithically integrated (2-T) and mechanically stacked (4-T) configurations, Solar Energy, 225 (2021) 471-485. https://doi.org/10.1016/j.solener.2021.07.057
[5] L. Lin, P. Li, L. Jiang, Z. Kang, Q. Yan, H. Xiong, S. Lien, P. Zhang, Y. Qiu, Boosting efficiency up to 25% for HTL-free carbon-based perovskite solar cells by gradient doping using SCAPS simulation, Solar Energy, 215 (2021) 328-334. https://doi.org/10.1016/j.solener.2020.12.059
[6] L.A. Frolova, A.I. Davlethanov, N.N. Dremova, I. Zhidkov, A.F. Akbulatov, E.Z. Kurmaev, S.M. Aldoshin, K.J. Stevenson, P.A. Troshin, Efficient and Stable MAPbI(3)-Based Perovskite Solar Cells Using Polyvinylcarbazole Passivation, J Phys Chem Lett, 11 (2020) 6772-6778. https://doi.org/10.1021/acs.jpclett.0c01776
[7] J.P. Mailoa, C.D. Bailie, E.C. Johlin, E.T. Hoke, A.J. Akey, W.H. Nguyen, M.D. McGehee, T. Buonassisi, A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction, Applied Physics Letters, 106 (2015). https://doi.org/10.1063/1.4914179
[8] S. Albrecht, M. Saliba, J.P.C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature, Energy & Environmental Science, 9 (2016) 81-88. https://doi.org/10.1039/C5EE02965A
[9] J. Werner, C.-H. Weng, A. Walter, L. Fesquet, J.P. Seif, S. De Wolf, B. Niesen, C. Ballif, Efficient monolithic perovskite/silicon tandem solar cell with cell area> 1 cm2, The journal of physical chemistry letters, 7 (2016) 161-166. https://doi.org/10.1021/acs.jpclett.5b02686
[10] H. Shen, S.T. Omelchenko, D.A. Jacobs, S. Yalamanchili, Y. Wan, D. Yan, P. Phang, T. Duong, Y. Wu, Y. Yin, In situ recombination junction between p-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells, Science advances, 4 (2018) eaau9711. https://doi.org/10.1126/sciadv.aau9711
[11] K.A. Bush, A.F. Palmstrom, Z.J. Yu, M. Boccard, R. Cheacharoen, J.P. Mailoa, D.P. McMeekin, R.L. Hoye, C.D. Bailie, T. Leijtens, 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability, Nature Energy, 2 (2017) 1-7. https://doi.org/10.1038/nenergy.2017.9
[12] K.A. Bush, S. Manzoor, K. Frohna, Z.J. Yu, J.A. Raiford, A.F. Palmstrom, H.-P. Wang, R. Prasanna, S.F. Bent, Z.C. Holman, Minimizing current and voltage losses to reach 25% efficient monolithic two-terminal perovskite–silicon tandem solar cells, ACS Energy Letters, 3 (2018) 2173-2180. https://doi.org/10.1021/acsenergylett.8b01201
[13] F. Sahli, B.A. Kamino, J. Werner, M. Bräuninger, B. Paviet‐Salomon, L. Barraud, R. Monnard, J.P. Seif, A. Tomasi, Q. Jeangros, Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction, Advanced Energy Materials, 8 (2018) 1701609. https://doi.org/10.1002/aenm.201701609
[14] F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J.J. Diaz Leon, D. Sacchetto, Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency, Nature materials, 17 (2018) 820-826. https://doi.org/10.1038/s41563-018-0115-4
[15] J. Xu, C.C. Boyd, Z.J. Yu, A.F. Palmstrom, D.J. Witter, B.W. Larson, R.M. France, J. Werner, S.P. Harvey, E.J. Wolf, Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems, Science, 367 (2020) 1097-1104. https://doi.org/10.1126/science.aaz5074
[16] M.J. Namvar, M.H. Abbaspour-Fard, M. Rezaei Roknabadi, A. Behjat, M. Mirzaei, The effect of inserting combined Rubidium-Cesium cation on performance of perovkite solar cell FAMAPb (IBr) 3, Journal of Research on Many-body Systems, 8 (2019) 125-138. https://doi.org/10.22055/jrmbs.2018.13963
[17] M. Nejadzangeneh, M. Ghasemi, S.M.B. Ghorashi, Design, simulation and fabrication of perovskite solar cell based on V2O5/Ag/WO3 transparent electrode, Journal of Research on Many-body Systems, 13 (2023) 17-33. https://doi.org/10.22055/JRMBS.2023.18129
[18] J. Madan, R. Pandey, R. Sharma, Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell, Solar energy, 197 (2020) 212-221. https://doi.org/10 10.1016/j.solener.2020. 01.006.
[19] Y. Raoui, H. Ez-Zahraouy, N. Tahiri, O. El Bounagui, S. Ahmad, S. Kazim, Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study, Solar Energy, 193 (2019) 948-955. https://doi.org/10.1016/j.solener.2019.10.009
[20] Y. Zou, Y. Liang, C. Mu, J.P. Zhang, Enhancement of open‐circuit voltage of perovskite solar cells by interfacial modification with p‐aminobenzoic acid, Advanced Materials Interfaces, 7 (2020) 1901584. https://doi.org/10.1002/admi.201901584
[21] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nature energy, 2 (2017) 1-8. https://doi.org/10.1038/nenergy.2017