طراحی و شبیه‏ سازی عددی سلول‏ های خورشیدی پشت سر هم بر پایة Sb2S3 جهت بهبود عملکرد فوتوولتائیک

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

در این تحقیق سلول‏های خورشیدی پشت سر هم مختلفی طراحی و شبیه‏سازی شده که در آنها زیرسلول بالایی Sb2S3 است. ساختارهای مختلفی شامل Sb2Se3، CISe، CZTSe و GeTe برای زیرسلول پایینی پیشنهاد شد. تطابق جریان در زیرسلول بالا و پایین در سلول‏های پشت سر هم از اهمیت زیادی برخوردار است. برای رسیدن به نقطه تطابق جریان ضخامت لایه‏های زیرسلول پایینی ثابت نگه داشته شد و ضخامت لایه جاذب سلول بالایی تغییرداده شد تا چگالی جریان در هردو زیر سلول یکسان شود. در نقطه تطابق جریان عملکرد سلول بالایی تحت تابش طیف استاندارد AM 1.5G و عملکرد زیرسلول پایینی تحت تابش طیف فیلتر شده مورد ارزیابی قرار گرفت و سپس منحنی مشخصه جریان- ولتاژ سلول پشت سر هم از مجموع منحنی‏های مشخصه دو زیرسلول فرعی به دست آمد. بازدهی به دست آمده برای سلول‏های پشت سرهم Sb2S3/Sb2Se3، Sb2S3/CIS، Sb2S3/CZTSe و Sb2S3/GeTe به ترتیب برابر %10/22، %95/30، %83/24 و %80/36 به دست آمد. هر چه اختلاف گاف انرژی سلول‏های فرعی بیشتر باشد، فوتون‏های بیشتری جمع‏آوری می‏شوند و چگالی جریان بزرگتری برای سلول حاصل می‏شود. بهترین عملکرد هنگامی به دست آمد که از GeTe به عنوان زیرسلول پایینی استفاده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Exploring a suitable partner for Sb2S3 solar cells for use in tandem solar cells

نویسندگان [English]

  • Zahra Dahmardeh
  • Mohsen Saadat
Department of Physics, Faculty of Science, University Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

In this research, different tandem solar cells have been designed and simulated, in which the upper sub-cell is Sb2S3. Different structures including Sb2Se3, CISe, CZTSe and GeTe were proposed for the lower sub-cell.It is very important to match the current in the upper and lower sub-cells in consecutive cells. To reach the current matching point, the thickness of the layers of the lower sub-cell was kept constant and the thickness of the absorbing layer of the upper cell was changed so that the current density in both sub-cells was the same. At the current matching point, the performance of the upper cell under the AM1.5G standard spectrum radiation and the performance of the lower sub-cell under the filtered spectrum radiation were evaluated, and then the current-voltage characteristic curve of the tandem cell was obtained from the sum of the characteristic curves of the two sub-cells. The efficiency obtained for Sb2S3/Sb2Se3, Sb2S3/CIS, Sb2S3/CZTSe and Sb2S3/GeTe tandem cells was 22.10%, 30.95%, 24.83% and 36.80%, respectively. The greater the energy gap difference of the sub-cells, the more photons are collected and the greater current density is obtained for the cell. The best performance was obtained when GeTe was used as the bottom sub-cell.

کلیدواژه‌ها [English]

  • Tandem solar cells
  • Sb2S3
  • Numerical simulation
  • Filtered spectrum
  • Current matching technique
[1] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nature Energy 2 (2017) 1-8.  https://doi.org/10.1038/nenergy.2017.32
[2] A. Richter, M. Hermle, S.W. Glunz, Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells, IEEE Journal of Photovoltaics 3 (2013) 1184-1191.  https://doi.org/10.0.4.85/JPHOTOV.2013.2270351
[3] T.K. Todorov, D.M. Bishop, Y.S. Lee, Materials perspectives for next-generation low-cost tandem solar cells, Solar Energy Materials and Solar Cells 180 (2018) 350-357.  https://doi.org/10.1016/j.solmat.2017.07.033
[4] S. Sharma, K.K. Jain, A. Sharma, Solar cells: in research and applications—a review, Materials Sciences and Applications 6 (2015) 1145. https://doi.org/10.4236/msa.2015.612113
[5] J. Dhilipan, N. Vijayalakshmi, D.B. Shanmugam, R. Jai Ganesh, S. Kodeeswaran, S. Muralidharan, Performance and efficiency of different types of solar cell material–A review, Materials Today: Proceedings 66 (2022) 1295-1302  https://doi.org/10.1016/j.matpr.2022.05.132
[6] W. Shockley, H.J. Queisser, Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells, Journal of Applied Physics 32 (2004) 510-519.  https://doi.org/10.1063/1.1736034
[7] National Renewable Energy Laboratory Best Research-Cell Efficiency, (2022). Available from: https://www.nrel.gov/pv/cell-efficiency.html
[8] M. Mousa, F.Z. Amer, R.I. Mubarak, A. Saeed, Simulation of Optimized High-Current Tandem Solar-Cells With Efficiency Beyond 41%, IEEE Access 9 (2021)  49724-49737. https://doi.org/10.1109/ACCESS.2021.3069281
[9] M.A. Green, Commercial progress and challenges for photovoltaics, Nature Energy 1 (2016)  15015.  https://doi.org/10.1038/nenergy.2015.15
[10] S.M. Iftiquar, J. Jung, J. Yi, Improved efficiency of perovskite-silicon tandem solar cell near the matched optical absorption between the subcells, Journal of Physics D: Applied Physics 50 (2017) 405501. https://doi.org/10.1088/1361-6463/aa8655
[11] Y. Cheng, L. Ding, Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications, SusMat 1 2021 324-344.  https://doi.org/10.1002/sus2.25
[12] N. Shrivastav, J. Madan, R. Pandey, A.E. Shalan, Investigations aimed at producing 33% efficient perovskite–silicon tandem solar cells through device simulations, RSC Advances 11 (2021) 37366-3737.  https://doi.org/10.1039/D1RA06250F
[13] A.D. Vos, Detailed balance limit of the efficiency of tandem solar cells, Journal of Physics D: Applied Physics 13 (1980) 839.  https://dx.doi.org/10.1088/0022-3727/13/5/018
[14] J.F. Geisz, R.M. France, K.L. Schulte, M.A. Steiner, A.G. Norman, H.L. Guthrey, M.R. Young, T. Song, T. Moriarty, Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration, Nature Energy 5 (2020) 326-335.  https://doi.org/10.1038/s41560-020-0598-5
[15] I. Tobías, A. Luque, Ideal efficiency of monolithic, series-connected multijunction solar cells, Progress in Photovoltaics: Research and Applications 10 (2002) 323-329.  https://doi.org/10.1002/pip.427
[16] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chemistry 6 (2014) 242-247. https://doi.org/10.1038/nchem.1861
[17] L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R.A. Street, Y. Yang, 25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research, Advanced Materials 25 (2013) 6642-6671.  https://doi.org/10.1002/adma.201302563
[18] A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells, Nature Materials 12 (2013) 1107-1111.  https://doi.org/10.1038/nmat3789
[19] M. Graetzel, R.A.J. Janssen, D.B. Mitzi, E.H. Sargent, Materials interface engineering for solution-processed photovoltaics, Nature 488 (2012) 304-312.  https://doi.org/10.1038/nature11476
[20] U.A. Shah, S. Chen, G.M.G. Khalaf, Z. Jin, H. Song, Wide Bandgap Sb2S3 Solar Cells, Advanced Functional Materials 31 (2021) 2100265. https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202100265
[21] M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells, Thin Solid Films 361 (2000) 527-532.  https://doi.org/10.1016/S0040-6090(99)00825-1
[22] M. Saadat, O. Amiri, Fine adjusting of charge carriers transport in absorber/HTL interface in Sb2(S,Se)3 solar cells, Solar Energy 243 (2022) 163-173. https://doi.org/10.1016/j.solener.2022.07.047
[23] Z. Dahmardeh, M. Saadat, Exploring the potential of standalone and tandem solar cells with Sb2S3 and Sb2Se3 absorbers: a simulation study, Scientific Reports 13 (2023) 22632. https://doi.org/10.1038/s41598-023-49269-w
[24] Z. Dahmardeh, M. Saadat, O. Amiri, Enhancing photovoltaic performance of antimony sulfide-selenide tandem solar cells through selenium content variation: Modeling and simulation analysis, Solar Energy 262 (2023) 111788. https://doi.org/10.1016/j.solener.2023.06.006
[25] M.M. Salah, A. Zekry, M. Abouelatta, A. Shaker, M. Mousa, F.Z. Amer, R.I. Mubarak, A. Saeed, High-Efficiency Electron Transport Layer-Free Perovskite/GeTe Tandem Solar Cell: Numerical Simulation, Crystals 12 (2022) 878. https://doi.org/10.3390/cryst12070878
[26] M. Saadat, O. Amiri, A. Rahdar, Optimization of (Zn,Sn)O buffer layer in Cu(In,Ga)Se2 based solar cells, Solar Energy 189 (2019) 464-470. https://doi.org/10.1016/j.solener.2019.07.093
[27] M. Haghighi, M. Minbashi, N. Taghavinia, D.-H. Kim, S.M. Mahdavi, A.A. Kordbacheh, A modeling study on utilizing SnS2 as the buffer layer of CZT(S, Se) solar cells, Solar Energy 167 (2018) 165-171. https://doi.org/10.1016/j.solener.2018.04.010
[28] M. Minbashi, M.K. Omrani, N. Memarian, D.-H. Kim, Comparison of theoretical and experimental results for band-gap-graded CZTSSe solar cell, Current Applied Physics 17 (2017) 1238-1243.  https://doi.org/10.1016/j.cap.2017.06.003
[29] N. Singh, A. Agarwal, M. Agarwal, Numerical simulation of highly efficient lead-free all-perovskite tandem solar cell, Solar Energy 208 (2020) 399-410.  https://doi.org/10.1016/j.solener.2020.08.003