[1] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nature Energy 2 (2017) 1-8. https://doi.org/10.1038/nenergy.2017.32
[2] A. Richter, M. Hermle, S.W. Glunz, Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells, IEEE Journal of Photovoltaics 3 (2013) 1184-1191. https://doi.org/10.0.4.85/JPHOTOV.2013.2270351
[5] J. Dhilipan, N. Vijayalakshmi, D.B. Shanmugam, R. Jai Ganesh, S. Kodeeswaran, S. Muralidharan, Performance and efficiency of different types of solar cell material–A review, Materials Today: Proceedings 66 (2022) 1295-1302 https://doi.org/10.1016/j.matpr.2022.05.132
[6] W. Shockley, H.J. Queisser, Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells, Journal of Applied Physics 32 (2004) 510-519. https://doi.org/10.1063/1.1736034
[10] S.M. Iftiquar, J. Jung, J. Yi, Improved efficiency of perovskite-silicon tandem solar cell near the matched optical absorption between the subcells, Journal of Physics D: Applied Physics 50 (2017) 405501. https://doi.org/10.1088/1361-6463/aa8655
[11] Y. Cheng, L. Ding, Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications, SusMat 1 2021 324-344. https://doi.org/10.1002/sus2.25
[12] N. Shrivastav, J. Madan, R. Pandey, A.E. Shalan, Investigations aimed at producing 33% efficient perovskite–silicon tandem solar cells through device simulations, RSC Advances 11 (2021) 37366-3737. https://doi.org/10.1039/D1RA06250F
[14] J.F. Geisz, R.M. France, K.L. Schulte, M.A. Steiner, A.G. Norman, H.L. Guthrey, M.R. Young, T. Song, T. Moriarty, Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration, Nature Energy 5 (2020) 326-335. https://doi.org/10.1038/s41560-020-0598-5
[15] I. Tobías, A. Luque, Ideal efficiency of monolithic, series-connected multijunction solar cells, Progress in Photovoltaics: Research and Applications 10 (2002) 323-329. https://doi.org/10.1002/pip.427
[16] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chemistry 6 (2014) 242-247. https://doi.org/10.1038/nchem.1861
[17] L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R.A. Street, Y. Yang, 25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research, Advanced Materials 25 (2013) 6642-6671. https://doi.org/10.1002/adma.201302563
[18] A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells, Nature Materials 12 (2013) 1107-1111. https://doi.org/10.1038/nmat3789
[19] M. Graetzel, R.A.J. Janssen, D.B. Mitzi, E.H. Sargent, Materials interface engineering for solution-processed photovoltaics, Nature 488 (2012) 304-312. https://doi.org/10.1038/nature11476
[20] U.A. Shah, S. Chen, G.M.G. Khalaf, Z. Jin, H. Song, Wide Bandgap Sb2S3 Solar Cells, Advanced Functional Materials 31 (2021) 2100265. https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202100265
[23] Z. Dahmardeh, M. Saadat, Exploring the potential of standalone and tandem solar cells with Sb2S3 and Sb2Se3 absorbers: a simulation study, Scientific Reports 13 (2023) 22632. https://doi.org/10.1038/s41598-023-49269-w
[24] Z. Dahmardeh, M. Saadat, O. Amiri, Enhancing photovoltaic performance of antimony sulfide-selenide tandem solar cells through selenium content variation: Modeling and simulation analysis, Solar Energy 262 (2023) 111788. https://doi.org/10.1016/j.solener.2023.06.006
[25] M.M. Salah, A. Zekry, M. Abouelatta, A. Shaker, M. Mousa, F.Z. Amer, R.I. Mubarak, A. Saeed, High-Efficiency Electron Transport Layer-Free Perovskite/GeTe Tandem Solar Cell: Numerical Simulation, Crystals 12 (2022) 878. https://doi.org/10.3390/cryst12070878
[27] M. Haghighi, M. Minbashi, N. Taghavinia, D.-H. Kim, S.M. Mahdavi, A.A. Kordbacheh, A modeling study on utilizing SnS2 as the buffer layer of CZT(S, Se) solar cells, Solar Energy 167 (2018) 165-171. https://doi.org/10.1016/j.solener.2018.04.010
[28] M. Minbashi, M.K. Omrani, N. Memarian, D.-H. Kim, Comparison of theoretical and experimental results for band-gap-graded CZTSSe solar cell, Current Applied Physics 17 (2017) 1238-1243. https://doi.org/10.1016/j.cap.2017.06.003