[1] H. Dixit, D. Punetha, S.K. Pandey, Performance investigation of Mott-insulator LaVO3 as a photovoltaic absorber material, Journal of Electronic Materials, 48 (2019) 7696-7703. https://doi.org/10.1007/s11664-019-07581-0
[2] C.M. Kropf, A. Valli, P. Franceschini, G.L. Celardo, M. Capone, C. Giannetti, F. Borgonovi, Towards high-temperature coherence-enhanced transport in heterostructures of a few atomic layers, Physical Review B, 100 (2019) 035126. https://doi.org/10.1103/PhysRevB.100.035126
[3] L. Wang, Y. Li, A. Bera, C. Ma, F. Jin, K. Yuan, W. Yin, A. David, W. Chen, W. Wu, Device performance of the mott insulator LaVO3 as a photovoltaic material, Physical Review Applied, 3 (2015) 064015. https://doi.org/10.1103/PhysRevApplied.3.064015
[4] R.T. Scalettar, An introduction to the Hubbard hamiltonian, quantum materials: experiments and theory, 6 (2016)
[5] S. Verma, A. Singh, A Strongly Correlated Quantum Dot Heat Engine with Optimal Performance: A Nonequilibrium Green's Function Approach, physica status solidi (b), 260 (2023) 2200608.https://doi.org/10.1002/pssb.202200608
[6] S. Datta, Quantum transport: atom to transistor, Cambridge university press2005
[7] M. Lavagna, V. Talbo, T. Duong, A. Crépieux, Level anticrossing effect in single-level or multilevel double quantum dots: Electrical conductance, zero-frequency charge susceptibility, and Seebeck coefficient, Physical Review B, 102 (2020) 115112.https://doi.org/10.1103/PhysRevB.102.115112
[8] H. Bruus, K. Flensberg, Many-body quantum theory in condensed matter physics: an introduction, OUP Oxford2004.