Study of the electronic and optical properties of graphene-like ZnSe structure considering many body effects

Document Type : Full length research Paper

Author

Department of Physics, Faculty of Sciences, Golestan University, Gorgan, Iran

Abstract

Electronic and optical properties of graphene-like ZnSe were investigated through a comprehensive study using ab initio calculations. By employing the GW method, we accurately determine the electronic band structure and bandgap of graphene-like ZnSe, considering the many-body effects. Additionally, we examine the optical properties of graphene-like ZnSe using the GW+BSE method, calculate the optical absorption spectrum, and determine excitonic properties such as exciton binding energy and optical bandgap. The GW calculations reveal that the ZnSe bandgap is direct with an energy gap of approximately 4.869 eV and exhibits excitons with relatively strong binding energies ranging from 0.2 to 0.8 eV. The majority of bound exciton distributions arise from transitions between Zn(3p)+Zn(3d)+Se(4p) ®Zn(4s)+Se(4s)  at the gamma point of the Brillouin zone. The precise determination of the band structure, bandgap, and excitonic properties enables a better understanding of the material's behavior and aids in the design and optimization of future ZnSe graphene-based devices.

Keywords

Main Subjects


[1] A.E. Dubinov, D.Y. Kolotov, Ionacoustic supersolitons in plasma, Plasma Physics Reports 38 (2012) 909-912. https://doi.org/10.1134/S1063780X1212003X
[2]        Y.S. Park, F.L. Chan, Photoconductivity spectral response and lattice parameters of hexagonal ZnSe, Journal of Applied Physics 36 (1965) 800. https://doi.org/10.1063/1.1713898
[3] Q. Zhang, H. Li, Y. Ma, T. Zhai, ZnSe nanostructures: synthesis, properties and applications, Progress in Materials Science, 83 (2016) 472-535. https://doi.org/10.1016/j.pmatsci.2016.07.005
[4] D. Li, G. Xing, S. Tang, X. Li, L. Fan, Li, Ultrathin ZnSe nanowires: one-pot synthesis via a heat-triggered precursor slow releasing route controllable Mn doping and application in UV and near-visible light detection, Nanoscale 9 (2017) 15044-15055. https://doi.org/10.1039/C7NR04344F
[5] M.J. Kim, Y.I. Choi, S.W. Joob, M. Kang, Y. Sohn, Synthesis of Er and Yb-doped cubic and hexagonal phase ZnSe nano-assembled microspheres and their photocatalytic activities, Ceramics International 40 (2014) 16051–16059. https://doi.org/10.1016/j.ceramint.2014.07.055
[6] J.L. Rojas-Chávez, R. González-Domínguez, R. Román-Doval, J.M. Juárez-García, N. Daneu, R. Farías, ZnTe semiconductor nanoparticles: A chemical approach of the mechanochemical synthesis. Materials Science in Semiconductor Processing 86 (2018) 128–138. https://doi.org/10.1016/j.mssp.2018.08.041
[7] J.E. Bernard, A. Zunger, Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys, Physical Review B Condensed Matter 36 (1987)  3199-3228. https://doi.org/10.1103/PhysRevB.36.3199
[8] P.J. Wright, B. Cockayne, P.J. Parbrook, K.P. O'Donnell, B. Henderson, Time-resolved photoluminescence studies of ZnSe epitaxial layers grown by molecular beam epitaxy, Semiconductor Science and Technology 6 (1991) 29. https://doi.org/10.1088/0268-1242/6/12A/008
[9] A. Bechiri, F. Benmakhlouf, N. Bouarissa, Calculation of electronic and optical properties of Zn-based II–VI semiconductors, Physics Procedia 2(3) (2009) 803-812. https://doi.org/10.1016/j.phpro.2009.07.107
[10] Y.F. Sun, Z.H. Sun, S. Gao, H. Cheng, Q.H. Liu, J.Y. Piao, T. Yao, C.Z. Wu, S.L. Hu, S.Q. Wei, Y. Xie, Fabrication of flexible and freestanding zinc chalcogenide single layers, Nature Communications 3 (2012) 1057. https://doi.org/10.1038/ncomms2051
[11] J. Sharma, H. Singh, T. Singh, A. Thakur, Structural, optical and photo-electrical properties of nanocrystalline ZnSe thin films, Journal of Materials Science: Materials in Electronics 29 (2018) 5688–5695. https://doi.org/10.1007/s10854-017-8451-y
[12] H. Park, H. Chung, W. Kim, Synthesis of ultrathin wurtzite ZnSe nanosheets, Materials Letters 99 (2013)  172-175. https://doi.org/10.1016/j.matlet.2013.03.038
[13] L. Li, P. Li, N. Lu, J. Dai, X.C. Zeng, Simulation evidence of hexagonal-to-tetragonal ZnSe structure transition: a monolayer material with a wide-range tunable direct bandgap, Advanced Science 2 (2015) 1500290. https://doi.org/10.1002/advs.201500290
[14] J. Jalilian, F. Parandin, J. Jalilian, Tuning of electronic and optical properties in ZnX (X=O, S, Se and Te) monolayer: hybrid functional calculations, Chemical Reviews Letters 2 (2019) 76–83. https://doi.org/10.26434/chemrevlett.2019-0008
[15] E.E. Salpeter, H.A. Bethe, A Relativistic Equation for Bound-State Problems, Physical Review 84(1951) 1232−1242. https://doi.org/10.1103/PhysRev.84.1232
[16] L. Hedin, New Method for Calculating the One-Particle Green’s Function with Application to the Electron-Gas Problem, Physical Review 139(1965) A796 https://doi.org/10.1103/PhysRev.139.A796
[17] M.S. Hybertsen, S.G. Louie. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Physical Review B: Condensed Matter and Materials Physics 34 (1986) 5390. https://doi.org/10.1103/PhysRevB.34.5390
[18] G. Onida, L. Reining, A. Rubio. Electronic excitations: density-functional versus many-body Green’s-function approaches, Reviews of Modern Physics 74 (2002) 601−659. https://doi.org/10.1103/RevModPhys.74.601
[19] R.M. Martin, L. Reining, D.M. Ceperley, Interacting Electrons Theory and Computational Approaches, Cambridge University Press 2016. https://doi.org/10.1017/CBO9781139050807
[20] L. Reining. The GW approximation: content, successes and limitations, Wiley Interdisciplinary Reviews: Computational Molecular Science 8 (2018) 1344. https://doi.org/10.1002/wcms.1344
[21] D. Golze, M. Dvorak, P. Rinke, The GW Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy, Frontiers in Chemistry 7 (2019) 377. https://doi.org/10.3389/fchem.2019.00377
[22] A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok, P. Pavone, S. Rigamonti, S. Sagmeister, U. Werner, C. Draxl, exciting — a full-potential all-electron package implementing density-functional theory and many-body perturbation theory, Journal of Physics: Condensed Matter 26 (2014) 363202. https://doi.org/10.1088/0953-8984/26/36/363202
[23] M.S. Hybertsen, S.G. Louie, First-principles calculation of the band gap in semiconductors and insulators, Physical Review Letters 55 (1985) 1418 https://doi.org/10.1103/PhysRevLett.55.1418
[24] R.W. Godby, M. Schlüter, L.J. Sham, Self-energy operators and exchange-correlation potentials in semiconductors, Physical Review B 37 (1988) 10159 https://doi.org/10.1103/PhysRevB.37.1015
[25] M. Safari, Z. Izadi, J. Jalilian, I. Ahmad, S.J. Asadabadi, Metal mono-chalcogenides ZnX and CdX (X=S, Se and Te) monolayers: chemical bond and optical interband transitions by first principles calculations, Physics Letters A 381 (2017) 663-670. https://doi.org/10.1016/j.physleta.2016.11.040
[26] J.M. Apiroz, I. Infante, X. Lopez, J.M. Ugalde, F.D. Angeis. A first-principles study of II-VI (II=Zn; VI=O, S, Se, Te) semiconductor nanostructures, Journal of Materials Chemistry 22 (2012) 21453. https://doi.org/10.1039/c2jm34823e
[27] T.S. Tan, J.J. Kas, J.J. Rehr, Coulomb-hole and screened exchange in the electron self-energy at finite temperature, Phys. Rev. B 98 (2018) 115125. https://doi.org/10.1103/PhysRevB.98.115125
[28] M. Rohlfing, S.G. Louie, Electron-hole excitations and optical spectra from first principles, Physical Review B 62 (2000) 4927. https://doi.org/10.1103/PhysRevB.62.4927
[29] G.V. Astakhov, D.R. Yakovlev, V.P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, F. Henneberger, S.A. Crooker, Q. McCulloch, D. Wolverson, N.A. Gippius, and A. Waag, Binding energy of charged excitons in ZnSe-based quantum wells, Physical Review B 65 (2002) 165335. https://doi.org/10.1103/PhysRevB.65.165335