[1] A.E. Dubinov, D.Y. Kolotov, Ionacoustic supersolitons in plasma, Plasma Physics Reports 38 (2012) 909-912. https://doi.org/10.1134/S1063780X1212003X
[2] Y.S. Park, F.L. Chan, Photoconductivity spectral response and lattice parameters of hexagonal ZnSe, Journal of Applied Physics 36 (1965) 800. https://doi.org/10.1063/1.1713898
[3] Q. Zhang, H. Li, Y. Ma, T. Zhai, ZnSe nanostructures: synthesis, properties and applications, Progress in Materials Science, 83 (2016) 472-535. https://doi.org/10.1016/j.pmatsci.2016.07.005
[4] D. Li, G. Xing, S. Tang, X. Li, L. Fan, Li, Ultrathin ZnSe nanowires: one-pot synthesis via a heat-triggered precursor slow releasing route controllable Mn doping and application in UV and near-visible light detection, Nanoscale 9 (2017) 15044-15055. https://doi.org/10.1039/C7NR04344F
[5] M.J. Kim, Y.I. Choi, S.W. Joob, M. Kang, Y. Sohn, Synthesis of Er and Yb-doped cubic and hexagonal phase ZnSe nano-assembled microspheres and their photocatalytic activities, Ceramics International 40 (2014) 16051–16059. https://doi.org/10.1016/j.ceramint.2014.07.055
[6] J.L. Rojas-Chávez, R. González-Domínguez, R. Román-Doval, J.M. Juárez-García, N. Daneu, R. Farías, ZnTe semiconductor nanoparticles: A chemical approach of the mechanochemical synthesis. Materials Science in Semiconductor Processing 86 (2018) 128–138. https://doi.org/10.1016/j.mssp.2018.08.041
[7] J.E. Bernard, A. Zunger, Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys, Physical Review B Condensed Matter 36 (1987) 3199-3228. https://doi.org/10.1103/PhysRevB.36.3199
[8] P.J. Wright, B. Cockayne, P.J. Parbrook, K.P. O'Donnell, B. Henderson, Time-resolved photoluminescence studies of ZnSe epitaxial layers grown by molecular beam epitaxy, Semiconductor Science and Technology 6 (1991) 29. https://doi.org/10.1088/0268-1242/6/12A/008
[9] A. Bechiri, F. Benmakhlouf, N. Bouarissa, Calculation of electronic and optical properties of Zn-based II–VI semiconductors, Physics Procedia 2(3) (2009) 803-812. https://doi.org/10.1016/j.phpro.2009.07.107
[10] Y.F. Sun, Z.H. Sun, S. Gao, H. Cheng, Q.H. Liu, J.Y. Piao, T. Yao, C.Z. Wu, S.L. Hu, S.Q. Wei, Y. Xie, Fabrication of flexible and freestanding zinc chalcogenide single layers, Nature Communications 3 (2012) 1057. https://doi.org/10.1038/ncomms2051
[11] J. Sharma, H. Singh, T. Singh, A. Thakur, Structural, optical and photo-electrical properties of nanocrystalline ZnSe thin films, Journal of Materials Science: Materials in Electronics 29 (2018) 5688–5695. https://doi.org/10.1007/s10854-017-8451-y
[12] H. Park, H. Chung, W. Kim, Synthesis of ultrathin wurtzite ZnSe nanosheets, Materials Letters 99 (2013) 172-175. https://doi.org/10.1016/j.matlet.2013.03.038
[13] L. Li, P. Li, N. Lu, J. Dai, X.C. Zeng, Simulation evidence of hexagonal-to-tetragonal ZnSe structure transition: a monolayer material with a wide-range tunable direct bandgap, Advanced Science 2 (2015) 1500290. https://doi.org/10.1002/advs.201500290
[14] J. Jalilian, F. Parandin, J. Jalilian, Tuning of electronic and optical properties in ZnX (X=O, S, Se and Te) monolayer: hybrid functional calculations, Chemical Reviews Letters 2 (2019) 76–83. https://doi.org/10.26434/chemrevlett.2019-0008
[15] E.E. Salpeter, H.A. Bethe, A Relativistic Equation for Bound-State Problems, Physical Review 84(1951) 1232−1242. https://doi.org/10.1103/PhysRev.84.1232
[16] L. Hedin, New Method for Calculating the One-Particle Green’s Function with Application to the Electron-Gas Problem, Physical Review 139(1965) A796 https://doi.org/10.1103/PhysRev.139.A796
[17] M.S. Hybertsen, S.G. Louie. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Physical Review B: Condensed Matter and Materials Physics 34 (1986) 5390. https://doi.org/10.1103/PhysRevB.34.5390
[18] G. Onida, L. Reining, A. Rubio. Electronic excitations: density-functional versus many-body Green’s-function approaches, Reviews of Modern Physics 74 (2002) 601−659. https://doi.org/10.1103/RevModPhys.74.601
[20] L. Reining. The GW approximation: content, successes and limitations, Wiley Interdisciplinary Reviews: Computational Molecular Science 8 (2018) 1344. https://doi.org/10.1002/wcms.1344
[21] D. Golze, M. Dvorak, P. Rinke, The GW Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy, Frontiers in Chemistry 7 (2019) 377. https://doi.org/10.3389/fchem.2019.00377
[22] A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok, P. Pavone, S. Rigamonti, S. Sagmeister, U. Werner, C. Draxl, exciting — a full-potential all-electron package implementing density-functional theory and many-body perturbation theory, Journal of Physics: Condensed Matter 26 (2014) 363202. https://doi.org/10.1088/0953-8984/26/36/363202
[23] M.S. Hybertsen, S.G. Louie, First-principles calculation of the band gap in semiconductors and insulators, Physical Review Letters 55 (1985) 1418 https://doi.org/10.1103/PhysRevLett.55.1418
[24] R.W. Godby, M. Schlüter, L.J. Sham, Self-energy operators and exchange-correlation potentials in semiconductors, Physical Review B 37 (1988) 10159 https://doi.org/10.1103/PhysRevB.37.1015
[25] M. Safari, Z. Izadi, J. Jalilian, I. Ahmad, S.J. Asadabadi, Metal mono-chalcogenides ZnX and CdX (X=S, Se and Te) monolayers: chemical bond and optical interband transitions by first principles calculations, Physics Letters A 381 (2017) 663-670. https://doi.org/10.1016/j.physleta.2016.11.040
[26] J.M. Apiroz, I. Infante, X. Lopez, J.M. Ugalde, F.D. Angeis. A first-principles study of II-VI (II=Zn; VI=O, S, Se, Te) semiconductor nanostructures, Journal of Materials Chemistry 22 (2012) 21453. https://doi.org/10.1039/c2jm34823e
[27] T.S. Tan, J.J. Kas, J.J. Rehr, Coulomb-hole and screened exchange in the electron self-energy at finite temperature, Phys. Rev. B 98 (2018) 115125. https://doi.org/10.1103/PhysRevB.98.115125
[28] M. Rohlfing, S.G. Louie, Electron-hole excitations and optical spectra from first principles, Physical Review B 62 (2000) 4927. https://doi.org/10.1103/PhysRevB.62.4927
[29] G.V. Astakhov, D.R. Yakovlev, V.P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, F. Henneberger, S.A. Crooker, Q. McCulloch, D. Wolverson, N.A. Gippius, and A. Waag, Binding energy of charged excitons in ZnSe-based quantum wells, Physical Review B 65 (2002) 165335. https://doi.org/10.1103/PhysRevB.65.165335